

Bedienungsanleitung

CE

© Copyright HT ITALIA 2020

Ausführung DE 1.01 - 03/07/2020

INHALT	
1. SICHERHEITSVORKEHRUNGEN UND VERFAHREN	3
1.1. Vorwort	
1.2. Während der Anwendung	4
1.3. Nach Gebrauch	4
1.4. messkategorien-Definition (Überspannungskategorien)	
2. ALLGEMEINE BESCHREIBUNG	
2.1 Messgeräte mit Mittelwert und mit True RMS	5
2.2 Definition von True RMS wert und Crest-Faktor	5
	6
3.1 Vorbereitende Pröfung	۰6
3.2 Vorsergung des Gerötes	0
3.2. Versorgung des Gerales	0
4. NOWENRLATUR	
4.1. Geratebeschreibung	
4.1.1. Austrictungsmärklerungen	<i>،</i> ۲ 8
4.1.3. Angabe der konventionellen Stromrichtung	8
4.2. Tastenbeschreibung	9
4.2.1. Funktionstasten F1 – F2 – F3 – F4/OK	9
4.2.2. H/ESC/ Taste	9
4.3. Anfangs-Bildschirm	9
4.4. Instrumenteneinstellungen	10
4.4.1. Allgemein	
4.4.2. Datum/Zeit Menu	
4.4.5. Log Menu	
4.4.5. Speicher REC Menu – Loschen Daten	
4.4.6. Speicher IRC Menu	
5. ANWEISUNGEN ZUM GEBRAUCH	13
5.1. Berührungslose SpannungsErkennung	13
5.2. DC Spannungsmessung	13
5.3. AC/AC+DC Spannungsmessung	
5.3.1. Spannungsoberwellen	
5.3.2. Prüfung der Phasenfolge und der Phasengleichheit mit einer Messspitze	
5.4. DC Strommessung	
5.5. AC/AC+DC Strommessung	
5.5.1. Stioliloberweiten	21 28
5.0. Dynamic mildsi. Stronmessung (Messung des Anadistroms)	
5.7. DC Leistungs & Energiewessung	
5.0. AC/AC +DC Leislungs & Energymessung	
0. VERDINDUNG VON INSTRUMENTEN AUF FC UND MODILGERATE	
6.1. Download daten	
6.2. Real-Time readings	
6.3. Verbindung zu mobilen Geraten	
7. WARTUNG UND PFLEGE	
7.1. Allgemeine Informationen	
7.2. Batteriewechsel	
7.3. Reinigung	
/.4. Lebensende	
8. TECHNISCHE DATEN	50
8.1. Technische Eigenschaften	50
8.1.1. Richtlinien	
8.2 Limwolthodingungon	
8.2.1 Klimahedingungen für den Gebrauch	
8.3 Zubehör	

8.3.1	. Standard Zubehör	
9. SEF	RVICE	54
9.1.	Garantiebedingungen	
9.2.	Service	
10. ANI	HANG – THEORETISCHE INFORMATIONEN	55
10.1.	Spannungs- und Stromoberwellen	

1. SICHERHEITSVORKEHRUNGEN UND VERFAHREN

Dieses Gerät entspricht der Sicherheitsnorm IEC/EN61010-1 für elektronische Messgeräte. Zu Ihrer eigenen Sicherheit und der des Gerätes müssen Sie den Verfahren folgen, die in dieser Bedienungsanleitung beschrieben werden, und müssen besonders alle Notizen lesen, denen folgendes Symbol \triangle voran gestellt ist.

Achten Sie bei Messungen mit äußerster Sorgfalt auf folgende Bedingungen:

- Messen Sie keine Spannungen oder Ströme in feuchter oder nasser Umgebung.
- Benutzen Sie das Messgerät nicht in Umgebungen mit explosivem oder brennbarem Gas oder Material, Dampf oder Staub.
- Berühren Sie den zu messenden Stromkreis nicht, wenn Sie keine Messung durchführen.
- Berühren Sie keine offen liegenden leitfähigen Metallteile wie ungenutzte Messleitungen, Anschlüsse, und so weiter.
- Benutzen Sie das Messgerät nicht, wenn es sich in einem schlechten Zustand befindet, z.B. wenn Sie eine Unterbrechung, Deformierung, Bruch, fremde Substanz, keine Anzeige, und so weiter feststellen.
- Seien Sie vorsichtig bei Messungen von über 20V, da ein Risiko eines elektrischen Schocks besteht

Die folgenden Symbole werden in dieser Bedienungsanleitung und auf dem Gerät benutzt:

 \bigwedge^{\wedge}

Achtung: Beziehen Sie sich auf die Bedienungsanleitung. Falscher Gebrauch kann zur Beschädigung des Messgerätes oder seiner Bestandteile führen.

Gefahr Hochspannung: Risiko eines elektrischen Schlages.

Die Zange auch auf unter Spannung stehenden Leitern benutzt werden kann

Messgerät doppelt isoliert.

- AC Spannung oder Strom
- DC Spannung oder Strom
- 📥 Erdung

1.1. VORWORT

- Dieses Gerät ist für die Verwendung in einer Umgebung mit Verschmutzungs-Grad 2 vorgesehen.
- Das Gerät kann zur Messung von **STROM** und **SPANNUNG** in Installationen mit CAT IV 600V, CAT III 1000V benutzt werden. Zur Definition der Messkategorien siehe § 1.4.
- Halten Sie die üblichen Sicherheitsbestimmungen ein, die zum Schutz des Bedieners vor gefährlichen Strömen und des Gerätes vor einer falschen Bedienung vorgesehen sind.
- Nur die mitgelieferten Messleitungen garantieren Übereinstimmung mit der Sicherheitsnorm. Sie müssen in einem guten Zustand sein und, falls nötig, durch dasselbe Modell ersetzt werden.
- Messen Sie keine Stromkreise, die die spezifizierten Spannungs- oder Stromgrenzen übersteigen.
- Prüfen Sie, ob die Batterie korrekt installiert ist.
- Bevor Sie die Messleitungen mit dem zu messenden Stromkreis verbinden, sollten Sie überprüfen, ob der Funktionsdrehschalter auf die richtige Messung eingestellt worden ist.
- Prüfen Sie, ob die LCD-Anzeige und der Funktionsdrehschalter dieselbe Funktion zeigen

1.2. WÄHREND DER ANWENDUNG

Lesen Sie die folgenden Empfehlungen und Anweisungen sorgfältig:

WARNUNG

Das Nichtbefolgen der Verwarnungen und/oder der Gebrauchsanweisungen kann das Gerät und/oder seine Bestandteile beschädigen und eine Gefahr für den Benutzer darstellen.

- Bevor Sie den Funktionswahlschalter drehen und den Messbereich ändern, entfernen Sie den Leiter von der Zange oder die Messleitungen vom Stromkreis.
- Berühren Sie nie einen unbenutzten Anschluss, wenn das Messgerät mit dem Schaltkreis verbunden ist.
- Halten Sie Ihre Hände immer unterhalb der Schutzvorrichtung, die sich in einer geeigneten Stellung befindet, um den korrekten Sicherheitsabstand von eventuellen offen liegenden leitfähigen Teilen zu gewährleisten (siehe Abb. 3).
- Messen Sie keinen Widerstand, wenn äußere Spannungen vorhanden sind. Auch wenn das Gerät geschützt ist, kann eine übermäßige Spannung Funktionsstörungen der Zange verursachen.
- Bei der Strommessung kann jeder andere Strom in der Nähe der Zange die Genauigkeit der Messung beeinträchtigen.
- Setzen Sie, wenn Sie Strom messen, den Leiter immer ins Zentrum der Zangenöffnung, damit Sie eine genauere Ablesung der Messwerte erhalten.
- Wenn sich während der Messung der Wert der Anzeige nicht verändert, prüfen Sie, ob die HOLD-Funktion aktiv ist.

1.3. NACH GEBRAUCH

- Schalten Sie das Gerät aus, sobald die Messungen abgeschlossen sind.
- Wenn das Gerät für eine lange Zeit nicht benutzt wird, entfernen Sie die Batterie.

1.4. MESSKATEGORIEN-DEFINITION (ÜBERSPANNUNGSKATEGORIEN)

Die Norm IEC/EN61010-1:Sicherheitsstandards für elektrische Mess- und Steuerungsgeräte und Geräte zur Laboranwendung, Artikel 1: Allgemeine Erfordernisse, definiert die Bedeutung von Messkategorie, gewöhnlich auch Überspannungskategorie genannt. In § 6.7.4.: Zu messende Stromkreise, definiert die Norm Messkategorien wie folgt:

• **Messkategorie IV** ist für Messgeräte, die an der Einspeisung der Niederspannungsanlagen messen können.

Beispiele sind Stromzähler und Messungen an Hauptüberstromschutzvorrichtungen und kleinen Transformatoreneinheiten.

- **Messkategorie III** ist für Messgeräte, die in Gebäudeinstallationen messen können. Beispiele sind Messungen an Installationsverteilern, Sicherungsautomaten, Installationsleitungen, Netzwerksteckdosen, Verteilerkästen, Schalter, Deckenauslässe in der festen Installation. Weiterhin Geräte, die in der Industrie zur Anwendung kommen, die unter anderem dauerhaft festangeschlossen sind, wie zum Beispiel ein Motor.
- **Messkategorie II** ist für Messgeräte, die Messungen an Geräten ausführen die ein Netzanschlusskabel haben Beispiele sind Messungen an Haushaltsgeräten, tragbaren Werkzeugen und ähnlichen Geräten.
- **Messkategorie I** ist für Messgeräte, die Messungen an Stromkreisen ausführen, die nicht direkt mit dem NETZ verbunden sind.
- Beispiele sind Messungen an mit dem NETZ nicht verbundenen und mit dem NETZ verbundenen aber mit besonderem (innerem) Schutz vorhandenen Installationen. In diesem letzten Fall ist der durch Transienten verursachte Stress variabel, deshalb (OMISSIS) muss der Benutzer die Widerstandsfähigkeit des Geräts kennen.

2. ALLGEMEINE BESCHREIBUNG

Die Stromzange kann die folgenden Messungen durchführen:

- DC Spannung bis zu 1500V
- AC, (AC+DC) TRMS Spannung bis zu 1000V
- "Wechselspannungserkennung (berührungslos) mit Hilfe eines Sensors in den Zangenbacken
- DC, AC, AC+DC TRMS Strom bis zu 1000A
- Widerstand- und Durchgangstest mit Summer
- Drehfeldrichtung & Phasengleichheit mit nur einer Messleitung
- Messung/Aufzeichnung von Wirkleistung, Blindleistung, Scheinleistung in 1 und/oder 3 phasigen symmetrisch belasteten Systemen
- Messung/Aufzeichnung des Leistungsfaktors in 1 und/oder 3 phasigen belasteten Systemen
- Messung/Aufzeichnung der Energie in 1 und/oder 3 phasigen belasteten Systemen
- Messung/Aufzeichnung von DC Leistung/ Energie
- Messung/Aufzeichnung AC Spannungsoberwellen (1.–25.) und THD%
- Messung/Aufzeichnung AC Stromoberwellen (1.–25.) und THD%
- Frequenzmessung von Spannung & Strom
- Messung von Anlassströmen der elektrischen Motoren (INRUSH)
- WiFi Schnittstelle für Datenübertragung zum PC oder mobilen Anwendungen

Jede dieser Funktionen kann über einen 6-stelligen Funktionswahlschalter gewählt werden, einschl. der AUS-Stellung. Die Tasten **F1**, **F2**, **F3**, **F4/OK** und **H/ESC/** sind ebenfalls vorhanden. Eine genauere Beschreibung finden Sie in § 4.2.

2.1. MESSGERÄTE MIT MITTELWERT UND MIT TRUE RMS

Die Messgeräte von Wechselwerten gehören zu zwei großen Familien:

- Geräte mit MITTELWERT: Geräte, die nur den Wellenwert bei der fundamentalen Frequenz von 10 bis 400HZ messen
- Geräte mit TRUE RMS (True Root Mean Square): Geräte, die den True RMS Wert der analysierten Größe messen.

Bei einer perfekten Sinuswelle liefern die zwei Gerätenfamilien identische Ergebnisse. Bei verzerrten Wellen dagegen unterscheiden sich die Ablesungen. Geräte mit Mittelwert liefern nur den RMS Wert der fundalentalen Welle; Geräte mit True RMS liefern den RMS Wert der ganzen Welle, Oberwellen eingeschlossen (innerhalb der Bandbreite des Geräts). Deshalb, bei der Messung derselben Größe mit Geräten von beiden Familien, sind die Werte nur dann identisch, wenn eine perfekte Sinuswelle vorhanden ist. Wenn die Welle verzerrt ist, liefern Geräte mit True RMS höhere Ergebnisse als Geräte mit Mittelwert.

2.2. DEFINITION VON TRUE RMS WERT UND CREST-FAKTOR

Der RMS Wert für Strom wird wie folgt definiert: "In einer Zeit, die einer Periode entspricht, vertreibt ein Wechselstrom mit RMS Wert mit einer Intensität von 1A, der auf einem Widerstand kreist, soviel Strom, wie ein Gleichstrom mit einer Intensität von 1A in derselben Zeit vertreiben würde". Von dieser Definition stammt der numerische Ausdruck: $G = \int_{1}^{\frac{6}{1}} \frac{1}{2} \frac{1}{2} \frac{1}{2}}$ Es wird der RMS Wert (*Effektivwert*) angegeben.

 $\mathsf{G} = \sqrt{\frac{1}{T} \int_{t_0}^{t_0+T} g^2(t) dt}$

Der Crest-Faktor wird als das Verhältnis zwischen dem Spitzenwert eines Signals und seinem RMS Wert definiert: CF (G)= $\frac{G_p}{G_{RMS}}$ Dieser Wert ändert sich mit der Wellenform des

Signals, für eine perfekte Sinuswelle ist der Wert $\sqrt{2}$ =1.41. Anderenfalls, je höher die Wellenverzerrung ist, desto höher ist der Wert des Crest-Faktors.

3. VORBEREITUNG FÜR DIE VERWENDUNG

3.1. VORBEREITENDE PRÜFUNG

Die gesamte Ausrüstung ist vor dem Versand mechanisch und elektrisch überprüft worden. Es wurde dafür Sorge getragen, dass das Messgerät Sie unbeschädigt erreicht. Dennoch ist es ratsam, einen Check durchzuführen, um einen möglichen Schaden zu entdecken, der während des Transportes verursacht worden sein könnte. Sollten Sie Anomalien feststellen, wenden Sie sich bitte sofort an die Speditionsfirma. Überprüfen Sie den Inhalt der Verpackung, der in § 8.3.1 aufgeführt wird. Bei Diskrepanzen verständigen Sie den Händler. Sollte es notwendig werden, das Gerät zurückzuschicken, bitte folgen Sie den Anweisungen in § 9.2

3.2. VERSORGUNG DES GERÄTES

Das Gerät wird mit zwei Batterien vom Typ 1.5V LR03 AAA UM-4 ausgeliefert. Falls die Batterien ersetzt werden müssen, folgen Sie den Anweisungen in § 5.2.

3.3. LAGERUNG

Um die Genauigkeit der Messungen, nach einer Zeit der Lagerung unter äußersten Umgebungs-Bedingungen zu garantieren, warten Sie eine Zeit lang, damit das Gerät zu den normalen Messbedingungen zurückkehrt (siehe § 8.2.1).

4. NOMENKLATUR

4.1. GERÄTEBESCHREIBUNG

Abb. 1: Gerätebeschreibung

4.1.1. Ausrichtungsmarkierungen

Legen Sie den Leiter innerhalb der Zangenöffnung so gut wie möglich (siehe Abb. 2) in den Kreuzungspunkt der gezeigten Marken um die Messgerätegenauigkeits-Spezifikationen zu erreichen.

LEGENDE:

- 1. Ausrichtungsmarkierungen
- 2. Leiter

Abb. 2: Ausrichtungsmarkierungen

4.1.2. Handschutzvorrichtung

LEGENDE:

- 1. Handschutzvorrichtung
- 2. Sicherheitsbereich

Abb. 3: Handschutzvorrichtung

Halten Sie Ihre Hände immer unterhalb der Schutzvorrichtung, die sich in einer geeigneten Stellung befindet, um den korrekten Sicherheitsabstand von eventuellen offen liegenden leitfähigen Teilen zu gewährleisten (siehe Abb. 3).

4.1.3. Angabe der konventionellen Stromrichtung

Im Photo in der Abb. 4 sehen Sie einen Pfeil, der die konventionelle Stromrichtung angibt

Abb. 4: Stromrichtungs-Pfeil

4.2. TASTENBESCHREIBUNG

4.2.1. Funktionstasten F1 – F2 – F3 – F4/OK

Die Funktionstasten **F1** - **F2** - **F3** - **F4/OK** haben unterschiedliche Funktionen je nach dem eingestellten Messmodus (zur detaillierten Beschreibung, siehe die einzelnen Funktionen).

4.2.2. H/ESC/[™] Taste

Durch kurzes Drücken der "H" Taste aktivieren Sie die Data HOLD Funktion, um die Anzeige des Messwertes einzufrieren. Das Symbol "I" wird angezeigt. Dieser Betriebsmodus wird deaktiviert, wenn die "H" Taste erneut gedrückt oder der Funktionswahlschalter gedreht wird. Um die Messwerte in einer dunklen Umgebung gut ablesen zu können, verfügt das Display über eine Hintergrundbeleuchtung. Halten Sie die Taste "H" länger gedrückt, um die Beleuchtung an- und auszuschalten. Falls die Funktion in dem MAN Modus eingestellt ist, wird die Hintergrundbeleuchtung automatisch nach 30 Sekunden deaktiviert, um die Batterie zu schonen. Die gleiche Taste verwendet auch die Funktion **ESC** (Exit).

4.3. ANFANGS-BILDSCHIRM

Wenn das Gerät eingeschaltet wird, wird der Anfangs-Bildschirm einige Sekunden lang angezeigt. Das Bildschirm enthält folgende Informationen:

- Das Gerätemodell;
- Die Seriennummer des Gerätes;
- Die Firmware-Version im Gerätespeicher.

HT9023

V. 1.01

WARNUNG

Diese Informationen vermerken, insbesondere die Firmware-Version, falls es notwendig wird, mit dem Kundendienst Kontakt aufzunehmen.

Nach einigen Sekunden schaltet das Gerät zur eingestellten Funktion um.

Durch die Positionierung des Auswahlschalters auf "Settings" erscheint der nebenstehende Bildschirm, der die möglichen Einstellungen des Instruments anzeigt. Drücken Sie die Tasten F2, F3 (♥,▲), um die Einstellungen der ausgewählten Elemente zu ändern, und die Taste F4 (OK), um in das Untermenue zu gelangen und die Auswahl zu bestätigen. Drücken Sie die ESC-Taste, um den Vorgang ohne Speichern zu beenden und zum vorherigen Bildschirm zurückzukehren.

4.4.1. Allgemein

In diesem Abschnitt können Sie die folgenden internen Funktionen verwalten:

- Sprache → Drücke F2, F3 ▼ ,▲) Tasten für die Auswahl der verfügbaren Sprachen und die F4 (OK)Taste, um das ausgewählte Element zu bestätigen. Die Meldung "Gespeicherte Daten" wird eine Weile im unteren Teil der Anzeige angezeigt
- Auto-off→ In diesem Abschnitt ist es möglich, die Auto-Power-Off-Funktion zu aktivieren/deaktivieren. Drücken Sie die Taste F2, F3 (◀, ►) für die Auswahl der Optionen "ON" oder "OFF" und die Taste F4 (OK), um das ausgewählte Element zu bestätigen. Die Meldung "Gespeicherte Daten" wird für eine Weile im unteren Teil der Anzeige angezeigt. Das ""O" Symbol wird mit aktivierter Auto-Ausschaltfunktion angezeigt und das Instrument schaltet sich nach ca. 5 Minuten der Nichtverwendung aus
- ➢ Hintergrundbeleuchtung. (Backlight) → In diesem Abschnitt ist es möglich, den Aktivierungsmodus der Display-Hintergrundbeleuchtung auszuwählen. Drücken Sie die Tasten F2, F3 (◀, ►) für die Auswahl der Option "MAN" (Hintergrundbeleuchtung manuell aktiviert durch Drücken der Taste "H" und deaktiviert Sich nach ca. 30 Sekunden) oder "ON" (Hintergrundbeleuchtung immer aktiv) und F4 (OK) Taste, um das ausgewählte Element zu bestätigen. Die Meldung "Gespeicherte Daten" wird für eine Weile im unteren Teil der Anzeige angezeigt. Die Option "ON" kann zu einer deutlichen Reduzierung der Batterielebensdauer führen

4.4.2. Datum/Zeit Menu

Wenn Sie das Element "**Datum/Uhrzeit**" auswählen, zeigt das Instrument, den nebenstehenden Bildschirm an. Drücken Sie die Taste **F1** (**Sel**), um den Cursor zu bewegen, und drücken Sie die Tasten **F2**, **F3** ($\mathbf{\nabla}, \mathbf{A}$), um die Einstellungen des ausgewählten Elements zu ändern. Mit dem Element "Format" können Sie das Datums-/Uhrzeitformat zwischen **EU** (**Europäisch**) oder **USA** (**Amerikanisch**)auswählen. Drücken Sie die Taste **F4** (**OK**), um das ausgewählte Element zu bestätigen. Die Meldung "Gespeicherte Daten" wird eine Weile im unteren Teil der Anzeige angezeigt

Sel	▼		OK
Jahr: Mona Tag: Stund Minut Forma	t: le.: e: at	20 01 17 15 34 EU	
17/01 -	- 15:34:	23]

▼▲OKAllgemein
Datum/Zeit
Log
Durchgang
Speicher REC
Speicher IRCOK

4.4.3. Log Menu

Wenn Sie das Element "Log" auswählen, zeigt das Instrument den Bildschirm nebenstehend an. Die Tasten F2. F3 ($\mathbf{\nabla}$. \mathbf{A}). drücken um die Einstellungen des Parameters Messintervall zu zwischen zwei aufeinanderändern (Zeit folgenden Abspeicherungen innerhalb eines Aufzeichnungsvorgangs). Die folgenden Werte sind verfügbar: 1s, 5s, 10s, 30s, 60s, 120s, 300s, 600s oder 900s. Drücken Sie die Taste F4 (OK), um das ausgewählte Element zu bestätigen. Die Meldung "Daten gespeichert " wird eine Weile im unteren Teil der Anzeige 17/01-15:34:23 angezeigt

4.4.4. Durchgang Menu

Wenn Sie das Element "Durchgang" auswählen, zeigt das Instrument den, nebenstehenden Bildschirm an. Drücken Sie die Tasten F2, F3 (∇ , \blacktriangle), um die Einstellung des Grenzwerts zu ändern, unterhalb dessen das Gerät ein Tonsignal bei der Durchgangsmessung ausgibt (siehe § 5.9). Der Wert ist im Feld wählbar: 1Ω bis 150Ω in Schritten von 1Ω . Drücken Sie die Taste F4 (OK), um das ausgewählte Element zu bestätigen. Die Meldung " Daten gespeichert " wird eine Weile im unteren Teil der Anzeige angezeigt

4.4.5. Speicher REC Menu – Loschen Daten

Im Abschnitt "Speicher REC" finden Sie eine Liste aller im Instrument gespeicherten Aufzeichnungen. Der Bildschirm auf der rechten Seite wird auf dem Display angezeigt. Die Bedeutung der Elemente sind die folgenden:

- (Snapshot) an, das vom Instrument durchgeführt wird (siehe § 6.2) zusammen mit dem Datum/der Uhrzeit, bei dem es gespeichert wurde. Die Zahl "xx" gibt den verwendeten Speicherstandort an
- \blacktriangleright Lxx \rightarrow gibt die Speicherung einer Aufzeichnung (Logger) an, die vom Instrument durchgeführt wird (siehe § 5.7 und § 5.8) zusammen mit dem Datum/der Uhrzeit, an der diese gestartet wurde. Die Zahl "xx" gibt den Speicherort an, an dem die Daten gespeichert werden
- > Auton \rightarrow zeigt den verbleibenden Restspeicher an, der zum Speichern von Snapshots/Aufzeichnungen in Tagen/Stunden verfügbar ist

Die Visualisierung der aufgezeichneten Daten ist nur über die TopView Management Software oder die HTAnalisys APP möglich

Drücken Sie die Taste F3 (Esc), um das allgemeine Menü zu beenden und zum allgemeinen Menü zurückzukehren. Drücken Sie F4 (OK), um die Vorgänge zu bestätigen.

	Del	Esc	OK		
S01:1	5/01-	16.56	:42		
L02:1	7/01-	16:59	:00		
L03:1	7/01-	17:10	:00		
Autor	1:	00d/	10h		
17/01 – 18:34:23					

OK

2

0

Im Abschnitt "Speicher IRC" finden Sie eine Liste aller im Instrument gespeicherten Anlassströmen (siehe § 5.6). Der Bildschirm wie der auf der Seite wird auf dem Display angezeigt. Die Bedeutung der Elemente sind die folgenden

➤ Ixx → zeigt die Einsparung der Anlassströmen anmit dem Datum/der Uhrzeit, bei dem es gespeichert wurde. Die Zahl "xx" gibt den verwendeten Speicherstandort an

Die Visualisierung der aufgezeichneten Daten ist nur über die TopView Management Software oder die HTAnalisys APP möglich

Drücken Sie die Taste F3 (Esc), um das allgemeine Menü zu beenden und zum allgemeinen Menü zurückzukehren. Drücker Sie **F4 (OK)**, um die Vorgänge zu bestätigen

- ➤ Del All → Löschen aller Inhalte des Speichers
- ➤ Del Last → Löschen der zuletzt gespeicherten Daten

Drücken Sie F4 (OK), um die Vorgänge zu bestätigen

u		Del	Esc		OK
n	I01:1 I02:1 I03:1 I04:1	Del All Del La 3/12- 3/12-	st. 10:45: 10:45:	05	0 1 1 8
	17/01 -	- 18:34:	23		I

5. ANWEISUNGEN ZUM GEBRAUCH

5.1. BERÜHRUNGSLOSE SPANNUNGSERKENNUNG

Mit dem Funktionswahlschalter auf "V≂" (Spannungsmessung) und die Spitze der Zangenbacken einer AC Quelle annähern. Die rote LED am Fuß der Zange schaltet sich ein (siehe Abb. 1 – Teil 2) und zeigt das Vorhandensein einer AC Spannung.

WARNUNG

Die Spannungsprüfungs-Funktion ist aktiv, wenn der Funktionswahlschalter der Zange auf "**V**=" gestellt ist.

5.2. DC SPANNUNGSMESSUNG

WARNUNG

- Die maximale DC Eingangsspannung beträgt 1500V. Wenn im Display die Meldung ">1500.0V" erscheint, bedeutet es, dass der maximale Messwert der Zange überschreitet worden ist. Das Überschreiten der Grenzwerte könnte einen elektrischen Schock verursachen und das Messgerät beschädigen
- Die CAT III 1000V Markierung auf den Messleitungen garantiert eine sichere Spannungsmessung bis 1500V

Abb. 5: DC Spannungsmessung

 Wenn Sie den Funktionswahlschalter auf "V≂" stellen, wird der Bildschirm auf der Seite angezeigt.
 AC < 42.5 Hz
 O.0 V
 17/01 – 15:34:23

-M`HT°

- Drücken Sie die F1 (Mod) Taste um das Drop-Down Menü zu öffnen und anzeigen zu lassen. Mit der gleichen Taste können Sie die "DC" Option auswählen
- Wählen Sie die DC Funktion aus und drücken Sie die F4 (OK) Taste zur Bestätigung. Die Taste F2 (Har) ist nicht aktiv in dieser Funktion

- Verbinden Sie die rote Messleitung mit der VΩ^{•)} Eingangsbuchse, und die schwarze Messleitung mit der COM (siehe Abb. 5) Buchse und verbinden Sie die Messspitzen mit dem zu pr
 üfenden Stromkreis.
- 5. Der Bildschirm auf der Seite zeigt ein Beispiel von DC Spannungsmessung.

Mod	Har	Fnc	
DC			
	0	1	T 7
	9.	Ŧ	V
17/01 -	- 15:34:	23]

- 6. Drücken Sie die **F3** (**Fnc**) Taste, um das Dropdown-Menü, das im seitlichen Bildschirm angezeigt ist, zu öffnen. Durch erneutes Drücken der **F3** Taste wird der Cursor die verfügbaren Einträge durchgehen:
 - **Max**: Zeigt ständig den maximalen Wert der gemessenen DC Spannung an;
 - Min: Zeigt ständig den minimalen Wert der gemessenen DC Spannung an;
 - Cr+: Zeigt ständig den maximalen Wert des positiven Crests an;
 - **Cr**-: Zeigt ständig den minimalen Wert des negativen Crests an;
 - RST: Löscht die abgespeicherten Max, Min, Cr+ und CR- Werte;
 - Esc: Kehrt zum normalen Messbetrieb zurück.

	î	
L	<u>! </u>	7

WARNUNG

Anmerkung: Die Messung der 4 Werte Max, Min, Cr+ und Cr- erfolgt gleichzeitig, unabhängig von der angezeigten Messung.

 Drücken Sie die F4 (OK) Taste, um den ausgewählten Mod Har Eintrag zu bestätigen. Der seitliche Bildschirm enthält ein Beispiel von Messung mit aktiver Max-Funktion. Im Display wird die aktive Funktion angezeigt.

Q	Bei der Verwendung der HOLD-und Hintergrund-Beleuchtungsfunktion siehe § 4.2 und
Ο.	Der der verwendung der HOLD-dna Hintergrund-Deredentungsfuhktion siehe § 4.2 und
	§ 4.4

Fnc

V

12.0

17/01 - 15:34:23

5.3. AC/AC+DC SPANNUNGSMESSUNG WARNUNG Die maximale AC/AC+DC Eingangsspannung beträgt 1000V. Wenn im Display die Meldung "> 999.9V" erscheint, bedeutet es, dass der maximale Messwert der Zange überschreitet worden ist. Das Überschreiten der Grenzwerte könnte einen elektrischen Schock verursachen und das Messgerät beschädigen 0 🚑 4 0 CAT IV 600V MAX 1000A **WHT** F1 F2 F3 F4 230.5

Abb. 6: AC/AC+DC Spannungsmessung

- Wenn Sie den Funktionswahlschalter auf "V≂" stellen, wird Mod Har Fnc der Bildschirm auf der Seite angezeigt.
 AC < 42.5 Hz
 0.0 V
 17/01 15:34:23
- Drücken Sie F1 (Mod) um das Drop-Down Menü zu öffnen und wählen Sie die "AC+DC" oder "AC" Option mit der gleichen Taste aus
- 3. Drücken Sie **F4** (**OK**) um zu bestätigen

า	Mod	Ha	ar	Fnc	0	K
r	AC		7)	<42.	5 F	Ιz
	DC					
	AC+D	C				
	Dreh	£	0)	7	7
	Hilf	е	Ŭ		,	,
	17/01 -	- 15	:34:	23]

-M^HT°

- Verbinden Sie die rote Messleitung mit der VΩ[•]) Eingangsbuchse, und die schwarze Messleitung mit der COM Buchse, und verbinden Sie die Messspitzen mit dem zu pr
 üfenden Stromkreis (siehe Abb. 6)
- 5. Der Bildschirm auf der Seite zeigt ein Beispiel von AC Spannungsmessung. Das Gerät ist in der Lage, die eventuelle Anwesenheit einer generischen Gleichwellenform überlagerten Wechselspannungsteile zu ermitteln. Dies kann bei der Messung von typischen Impuls-Signalen von nicht linearen Lasten (z.B. von Schweißmaschinen, elektrischen Öfen, usw.) nützlich sein).

Mod	Har	Fnc	
AC		50.0) Hz
	230	.1	V
17/01 -	- 15:34	23	Ī

Fnc

Max

Min Cr+

Cr-

RST

Esc

V

Har Har

ΑC

2

- Drücken Sie die F3 (Fnc) Taste, um das Untermenue zu öffnen. Durch erneutes Drücken der F3 Taste wird der Cursor die verfügbaren Einträge durchgehen:
 - Max: Zeigt ständig den maximalen RMS Wert der AC+DC Spannung an
 - Min: Zeigt ständig den minimalen RMS Wert der AC+DC Spannung an
 - Cr+: Zeigt ständig den maximalen Wert des positiven 17/01 15:34:23 Crests an
 - **Cr**-: Zeigt ständig den minimalen Wert des negativen Crests an
 - RST: Löscht die abgespeicherten Max, Min, Cr+ und CR-Werte
 - Esc: Kehrt zum normalen Messbetrieb zurück

WARNUNG

Die Messung von Max, Min, Cr+ and Cr- Werten ist gleichzeitig, unabhängig der angezeigten Werte.

 Drücken Sie die F4 (OK) Taste, um den ausgewählten M Eintrag zu bestätigen. Der seitliche Bildschirm enthält ein A Beispiel von Messung mit aktiver Max-Funktion. Im Display wird die aktive Funktion angezeigt.

Mod	Har	Fnc	
AC		50.0	Ηz
Max			
	231	. 5	V
17/01 -	- 15:34:	23]

8. Bei der Verwendung der HOLD-und Hintergrund-Beleuchtungsfunktion siehe § 4.2 und § 4.4

WHT°

5.3.1. Spannungsoberwellen

- Drücken Sie die F2 (Har) Taste, um das Oberwellen Menue Mod für Spannung, das im seitlichen Bildschirm angezeigt ist, zu öffnen. Durch erneutes Drücken der F2 (RMS) Taste wird der Cursor zum Bildschirm Spannungsmessung zurückkehren:
- Drücken Sie die Tasten F1 (◄) or F4 (►), um den Cursor über den Graphen zu bewegen und wählen Sie die zu messenden Harmonischen aus. Der absolute Wert oder Prozent-Wert der harmonischen Spannung wird angezeigt. Es ist möglich, bis zur 25 Harmonischen zu messen
- Bei der Messung von Spannungsoberwellen drücken Sie die F3 (Fnc) Taste, um das Dropdown-Menü, das im seitlichen Bildschirm angezeigt ist, zu öffnen. Durch erneutes Drücken der F3 Taste wird der Cursor die verfügbaren Einträge durchgehen:
 - Max: Zeigt ständig den maximalen RMS Wert der H01 ausgewählten Spannungsoberwelle an;
 - Min: Zeigt ständig den minimalen RMS Wert der ausgewählten Spannungsoberwelle an;
 - Abs: Zeigt den Absolutwert der Oberwellen in Volt an;
 - %: Zeigt den Wert der Oberwellen als Prozentsatz der Fundamentalen an;
 - Rst: Löscht die abgespeicherten Max, Min Werte;
 - Esc: Kehrt zum normalen Messbetrieb zurück.

WARNUNG

Da das Menü Funktionen mit verschiedenen Bedeutungen (Max-Min und Abs-%) enthält, muss man 2 x ins Menü eintreten: Einmal für die Anzeige von Absoluten oder % Werten und nochmals für die Aktivierung der Max oder Min Funktionen

- Drücken Sie die F4 (OK) Taste, um den ausgewählten Eintrag zu bestätigen. Der seitliche Bildschirm enthält ein Beispiel von Messung mit aktiver Max-Funktion. Im Display wird die aktive Funktion angezeigt.
- 5. Bei der Verwendung der HOLD-und Hintergrund-Beleuchtungsfunktion siehe § 4.2 und § 4.4

RMS

H01

ThdV

17/01 - 15:34:23

Fnc

215.0

10.0

V

%

5.3.2. Prüfung der Phasenfolge und der Phasengleichheit mit einer Messspitze WARNUNG

Prüfung der Phasenfolge

Abb. 7: Prüfung der Phasenfolge

- 1. Drücken Sie **F1** (**Mod**) um das Drop-Down Menü zu öffnen Mod und wählen Sie "**Drehf.**" Option mit der gleichen Taste.
- 2. Drücken Sie F4 (OK) um zu bestätigen

Go

			Mod			Go
3.	Das Ge	rät zeigt " PH1 " auf dem Bildschirm hier auf der Seite	Dreh	f.		
	und wa	rtet die Erkennung der Phase L1 ab				
4.	Verbind	len Sie die rote Messleitung mit der VΩ·))				
	Eingan	sbuchse und die schwarze Messleitung mit der COM		DF	11	
	Eingan	sbuchse. Kontaktieren Sie die rote Messspitze mit		± 1.		
	der Pha	use I 1 (siehe Abb 7)				
			Wart	е		
			17/01	- 18:34	:23]
		WARNUNG				
	$\mathbf{\Lambda}$	Wenn die Frequenz der gemessenen Spannung ni	iedrige	r als	42.5Hz	oder
	$\underline{/!}$	höher als 69Hz ist, erscheint im Display keine Me	elduna	"F<42	2.5 Hz"	oder
		"F>69 Hz" und die Phasenerkennung beginnt nicht.				
5.	Wenn	eine Spannung ≥100V erkannt wird, ertönt der	Mod			Go
	Summe	r des Gerätes und das Symbol "Mess" erscheint im	Dreh	f.		
	Display	. Drücken Sie jetzt keine Taste und halten Sie die				
	Messle	tung weiterhin an den Leiter mit der Phase L1.				
				ΡF	11	

- 6. Nach der Messung der Phase L1 erscheint der Bildschirm Mod auf der Seite. Die Messspitze vom Leiter der Phase L1 Drehf. abnehmen.
- Das Gerät zeigt den Bildschirm hier auf der Seite und wartet die Erkennung der Phase L2 ab. Die Messspitze mit dem Leiter der Phase L2 verbinden. (siehe Abb. 7)

17/01 – 18:34:23						
Mod Go						
rehf						
rn2						
	_					

Abklem.

Mess

Warte

17/01 - 18:34:23

WARNUNG

Wenn Sie mehr als 3 Sekunden warten, bevor Sie die Phase L2 messen, erscheint im Display die Meldung "**Time Out**". Es ist dann notwendig, den Messzyklus vom Anfang an zu wiederholen. Drücken Sie die **F4** (**Go**) Taste und beginnen Sie wieder vom Punkt 1.

8.	Wenn eine Spannung ≥100V erkannt wird, ertönt der	Mod			Go
	Summer des Gerätes und das Symbol "Mess" erscheint im Display. Drücken Sie jetzt keine Taste und halten Sie die	Drehf.			
	Messleitung weiterhin an den Leiter mit der Phase L2.				
			ΡH	2	
		Mess			
		17/01 – 1	8:34:2	23]
9.	Wenn die zwei Phasen, mit denen die Messspitze verbunden	Mod			Go
	wurde, in der richtigen Reihenfolge gemessen wurden,	Drehf.			
	erscheint der Bildschirm auf der Seite. Wenn die Reihenfolge				
	der Phasen nicht korrekt ist, erscheint im Display die Moldung "122"		1 0	2	
	Meldulig 132		12	3	
10.	Drücken Sie die F4 (Go) Taste zur Durchführung einer				
	neuen Messung.	47/04 4	F-04-0	20	
		17/01 – 1	5:34:2	23	

MHT°

Prüfung der Phasengleichheit

3.	Wenn eine Spannung ≥100V erkannt wird, ertönt der Summer des Gerätes und das Symbol " Mess " erscheint im Display. Drücken Sie jetzt keine Taste und halten Sie die Messleitung weiterbin an den Leiter mit der Phase I 1	Mod Go Drehf.
	Messiellung weiternin an den Leiter mit der Flase LT.	PH1 Mess
		17/01 – 15:34:23
4.	Nach der Ermittlung der Phase L1 erlöscht das akustische Signal und es erscheint der Bildschirm mit der Meldung Abklem. rechts auf der Seite. Bitte die Messspitze vom Leiter der Phase L1 abnehmen.	Mod Go Drehf.
		Abklem.
		Warte
		17/01 – 15:34:23
5.	Das Gerät zeigt den Bildschirm hier auf der Seite und wartet	Mod Go
	Die Messspitze mit dem Leiter der Phase L1 der zweiten Reihenfolge ab.	Drehf.
	Systems verbinden.	
		PH2
		Warte
		17/01 – 15:34:23
	WARNUNG	17/01 – 15:34:23
L	WARNUNG Wenn Sie mehr als 3 Sekunden warten, bevor Sie di Reihenfolge messen, erscheint im Display die Meld dann notwendig, den Messzyklus vom Anfang an zu Sie die F4 (Go) Taste und beginnen Sie wieder vom	17/01 – 15:34:23
6.	Warnung Wenn Sie mehr als 3 Sekunden warten, bevor Sie di Reihenfolge messen, erscheint im Display die Meld dann notwendig, den Messzyklus vom Anfang an zu Sie die F4 (Go) Taste und beginnen Sie wieder vom Wenn eine Spannung ≥100V erkannt wird, ertönt der	17/01 – 15:34:23 ie Phase L1 der zweiten lung "Time Out". Es ist u wiederholen. Drücken Punkt 1. Mod Go
6 .	Warnung Wenn Sie mehr als 3 Sekunden warten, bevor Sie di Reihenfolge messen, erscheint im Display die Meld dann notwendig, den Messzyklus vom Anfang an zu Sie die F4 (Go) Taste und beginnen Sie wieder vom Wenn eine Spannung ≥100V erkannt wird, ertönt der Summer des Gerätes und das Symbol "Mess" erscheint im Display. Drücken Sie jetzt keine Taste und halten Sie die	17/01 – 15:34:23 Te Phase L1 der zweiten lung "Time Out". Es ist u wiederholen. Drücken Punkt 1. Mod Go Drehf.
6.	Warnung Wenn Sie mehr als 3 Sekunden warten, bevor Sie di Reihenfolge messen, erscheint im Display die Meld dann notwendig, den Messzyklus vom Anfang an zu Sie die F4 (Go) Taste und beginnen Sie wieder vom Wenn eine Spannung ≥100V erkannt wird, ertönt der Summer des Gerätes und das Symbol "Mess" erscheint im Display. Drücken Sie jetzt keine Taste und halten Sie die Messleitung weiterhin an <u>den Leiter mit der Phase L1 des</u> 2. Systems.	17/01 – 15:34:23 Te Phase L1 der zweiten lung "Time Out". Es ist u wiederholen. Drücken Punkt 1. Mod Go Drehf. PH2
6.	Warnung Wenn Sie mehr als 3 Sekunden warten, bevor Sie di Reihenfolge messen, erscheint im Display die Meld dann notwendig, den Messzyklus vom Anfang an zu Sie die F4 (Go) Taste und beginnen Sie wieder vom Wenn eine Spannung ≥100V erkannt wird, ertönt der Summer des Gerätes und das Symbol "Mess" erscheint im Display. Drücken Sie jetzt keine Taste und halten Sie die Messleitung weiterhin an <u>den Leiter mit der Phase L1 des</u> 2. Systems.	17/01 – 15:34:23 ie Phase L1 der zweiten lung "Time Out". Es ist u wiederholen. Drücken Punkt 1. Mod Go Drehf. PH2 Mess
6.	Image: Wenn Sie mehr als 3 Sekunden warten, bevor Sie di Reihenfolge messen, erscheint im Display die Meld dann notwendig, den Messzyklus vom Anfang an zu Sie die F4 (Go) Taste und beginnen Sie wieder vom Wenn eine Spannung ≥100V erkannt wird, ertönt der Summer des Gerätes und das Symbol "Mess" erscheint im Display. Drücken Sie jetzt keine Taste und halten Sie die Messleitung weiterhin an den Leiter mit der Phase L1 des 2. Systems.	17/01 – 15:34:23 ie Phase L1 der zweiten lung "Time Out". Es ist u wiederholen. Drücken Punkt 1. Mod Go Drehf. PH2 Mess 17/01 – 15:34:23
6 .	Warnung Image: Spannung ≥100V erkannt wird, ertönt der Summer des Gerätes und das Symbol "Mess" erscheint im Display. Drücken Sie jetzt keine Taste und halten Sie die Messleitung weiterhin an den Leiter mit der Phase L1 des 2. Systems. Image: Wenn die zwei Phasen, mit denen die Prüfspitze verbunden	17/01 – 15:34:23 ie Phase L1 der zweiten lung "Time Out". Es ist u wiederholen. Drücken Punkt 1. Mod Go Drehf. Mess 17/01 – 15:34:23 Mod Go Mod Go 0 Go
6. 7.	Wenn Sie mehr als 3 Sekunden warten, bevor Sie di Reihenfolge messen, erscheint im Display die Meld dann notwendig, den Messzyklus vom Anfang an zu Sie die F4 (Go) Taste und beginnen Sie wieder vom Wenn eine Spannung ≥100V erkannt wird, ertönt der Summer des Gerätes und das Symbol "Mess" erscheint im Display. Drücken Sie jetzt keine Taste und halten Sie die Messleitung weiterhin an den Leiter mit der Phase L1 des 2. Systems. Wenn die zwei Phasen, mit denen die Prüfspitze verbunden wurde, gleich sind, erscheint der Bildschirm auf der Seite. Anderenfalls erscheint im Display die Meldung "123" oder "132"	17/01 – 15:34:23 e Phase L1 der zweiten lung "Time Out". Es ist u wiederholen. Drücken Punkt 1. Mod Go Drehf. Mod Go 17/01 – 15:34:23 Mod Go Drehf. Mod Go Drehf.
6. 7.	Image: Wenn Sie mehr als 3 Sekunden warten, bevor Sie di Reihenfolge messen, erscheint im Display die Meld dann notwendig, den Messzyklus vom Anfang an zu Sie die F4 (Go) Taste und beginnen Sie wieder vom Wenn eine Spannung ≥100V erkannt wird, ertönt der Summer des Gerätes und das Symbol "Mess" erscheint im Display. Drücken Sie jetzt keine Taste und halten Sie die Messleitung weiterhin an den Leiter mit der Phase L1 des 2. Systems. Wenn die zwei Phasen, mit denen die Prüfspitze verbunden wurde, gleich sind, erscheint der Bildschirm auf der Seite. Anderenfalls erscheint im Display die Meldung "123" oder "132"	17/01 – 15:34:23 e Phase L1 der zweiten lung "Time Out". Es ist u wiederholen. Drücken Punkt 1. Mod Orehf. Mod Go Drehf. Mod Go Drehf. Mod Go 111 -
6. 7. 8.	Wenn Sie mehr als 3 Sekunden warten, bevor Sie di Reihenfolge messen, erscheint im Display die Meld dann notwendig, den Messzyklus vom Anfang an zu Sie die F4 (Go) Taste und beginnen Sie wieder vom Wenn eine Spannung ≥100V erkannt wird, ertönt der Summer des Gerätes und das Symbol "Mess" erscheint im Display. Drücken Sie jetzt keine Taste und halten Sie die Messleitung weiterhin an <u>den Leiter mit der Phase L1 des</u> 2. Systems. Wenn die zwei Phasen, mit denen die Prüfspitze verbunden wurde, gleich sind, erscheint der Bildschirm auf der Seite. Anderenfalls erscheint im Display die Meldung "123" oder "132" Drücken Sie die F4 (Go) Taste zur Durchführung einer neuen Messung.	e Phase L1 der zweiten lung "Time Out". Es ist u wiederholen. Drücken Punkt 1. Mod Go Drehf. PH2 Mess 17/01 – 15:34:23 Mod Go Drehf. 11 –

5.4. DC STROMMESSUNG

- Der maximale messbare DC Strom beträgt 1000A. Wenn im Display die Meldung ">999.9A" erscheint, bedeutet es, dass der maximale Messwert der Zange überschreitet worden ist. Das Überschreiten der Grenzwerte könnte einen elektrischen Schock verursachen und das Messgerät beschädigen
- Es wird empfohlen, die Zange nur im Sicherheitsbereich der Handschutzvorrichtung zu halten (siehe Abb. 3)

Abb. 9: DC Strommessung

1.	Wenn Sie den Funktionswahlschalter auf "A=" stellen, v	Mod	Har	Fnc	Nul
	der Bildschirm auf der Seite angezeigt.	AC	<	42.5	Ηz
			0.	0	A
		17/01 -	- 15:34:	23]

-ŴHT°

- Drücken Sie F1 (Mod) um das Drop-Down Menü zu öffnen Mod und wählen Sie die "DC" Option mit der gleichen Taste. Die Taste F2 (Har) ist nicht aktiv in dieser Funktion
- 3. Drücken Šie **F**4 (**OK**) um zu bestätigen
- 4. Drücken Sie F4 (Nul) um den angezeigten Wert zu nullen

- 5. Setzen Sie den Leiter ins Zentrum der Zangenöffnung, damit Sie eine genauere Ablesung der Messwerte erhalten. Auf die vorhandenen Ausrichtungsmarkierungen achten (siehe Abb.9)
- 6. Der Bildschirm auf der Seite zeigt ein Beispiel einer DC Mod Har Strommessung.

Fnc

Max

Min

Rst Esc OK

Α

Har

100

- 7. Drücken Sie die F3 (Fnc) Taste, um das Dropdown-Menü, Mod das im seitlichen Bildschirm angezeigt ist, zu öffnen. Durch erneutes Drücken der F3 Taste wird der Cursor die verfügbaren Einträge durchgehen:
 - Max: Zeigt ständig den maximalen Wert des DC Stroms an;
 - Min: Zeigt ständig den minimalen Wert des ausgewählten DC Stroms an
 - Rst: Löscht die abgespeicherten Max, Min, Cr+ und CR-^{17/01 – 15:34:23}
 Werte
 - Esc: Kehrt zum normalen Messbetrieb zurück

 Führen Sie den Nullabgleich durch (Nul) bevor Sie die Zange um den Leiter legen.

WARNUNG

- Die Messung der 4 Werte Max, Min, Cr+ und Cr- erfolgt gleichzeitig, unabhängig von der angezeigten Messung.
- Drücken Sie die F4 (OK) Taste, um den ausgewählten Mod Eintrag zu bestätigen. Der seitliche Bildschirm enthält ein Beispiel einer Messung mit aktiver Max-Funktion. Im Display wird die aktive Funktion angezeigt.

			1	
	Mod	Har	Fnc	Nul
	DC			
,	Max			
		1 0 0	•	-
		ΤΖU	. 0	А
	17/01	15.31.	23	1
	17/01-	- 15.54.	20	1

9. Bei der Verwendung der HOLD-und Hintergrund-Beleuchtungsfunktion siehe § 4.2 und § 4.4

5.5. AC/AC+DC STROMMESSUNG

 1. Wenn Sie den Funktionswahlschalter auf "A=" stellen, wird Mod Har Fnc Nul der Bildschirm auf der Seite angezeigt.
 Mod Har Fnc Nul AC <42.5 Hz</td>

0.0	А
17/01 – 15:34:23]

-ŴHT

- 2. Drücken Sie F1 (Mod) um das Drop-Down Menü zu öffnen Mod Har und wählen Sie die "AC" oder "AC+DC" Option mit der gleichen Taste
- 3. Drücken Sie **F4** (**OK**) um zu bestätigen
- 4. Drücken Sie F4 (Nul) um den angezeigten Wert zu nullen

 Mod
 Har
 Fnc
 OK

 AC
 < 4 2 . 5 Hz</td>

 DC
 < 4 2 . 5 Hz</td>

 AC+DC
 0.0 A

 17/01 - 15:34:23

- 5. Setzen Sie den Leiter ins Zentrum der Zangenöffnung, damit Sie eine genauere Ablesung der Messwerte erhalten. Auf die vorhandenen Ausrichtungsmarkierungen achten (siehe Abb.10)
- 6. Der Bildschirm auf der Seite zeigt ein Beispiel einer AC Mod Strommessung. Das Messgerät ermöglicht eine Erfassung der möglichen Gleichstromkomponenten,. Das kann sehr hilfreich für Messungen der impulsiven Signale sein (AC+DC), in der Regel von nicht-linearen Lasten (z.B: Schweißer, elektrische Öfen, etc)
- 7. Drücken Sie die F3 (Fnc) Taste, um das Dropdown-Menü, Mod das im seitlichen Bildschirm angezeigt ist, zu öffnen. Durch erneutes Drücken der F3 Taste wird der Cursor die verfügbaren Einträge durchgehen:
 - Max: Zeigt ständig den maximalen RMS Wert des Stroms
 - Min: Zeigt ständig den minimalen RMS Wert des Stroms
 - **Cr+**: Zeigt ständig den maximalen Wert des positiven Crests an
 - **Cr**-: Zeigt ständig den minimalen Wert des negativen Crests an
 - RST: Löscht die abgespeicherten Max, Min, Cr+ und CR-Werte
 - Esc: Kehrt zum normalen Messbetrieb zurück

 Führen Sie den Nullabgleich durch (Nul) bevor Sie die Zange um den Leiter legen.

WARNUNG

- Die Messung der 4 Werte Max, Min, Cr+ und Cr- erfolgt gleichzeitig, unabhängig von der angezeigten Messung.
- 8. Drücken Sie die **F4** (**OK**) Taste, um den ausgewählten Mod Har Fr Eintrag zu bestätigen. Der seitliche Bildschirm enthält ein Beispiel von Messung mit aktiver Max-Funktion. Im Display Wax
- e die Zange um den r- erfolgt gleichzeitig, od Har Fnc c 50.0 Hz ax 120.0 A

17/01 - 15:34:23

9. Bei der Verwendung der HOLD-und Hintergrund-Beleuchtungsfunktion siehe § 4.2 und § 4.4

 17/01 – 15:34:23

 amit Sie eine genauere usrichtungsmarkierungen

 Mod
 Har
 Fnc

 AC
 50.0 Hz

 100.0
 A

17/01 – 15:34:23

5.5.1. Stromoberwellen

- Drücken Sie die F2 (Har) Taste, um das Dropdown-Menü, Mod Har Fnc das im seitlichen Bildschirm angezeigt ist, zu öffnen. Durch erneutes Drücken der F2 (RMS) Taste wird der Cursor die verfügbaren
 100.0 A
- Drücken Sie die Tasten F1 (◄) or F4 (►), um den Cursor über den Graphen zu bewegen und wählen Sie die zu messenden Harmonischen aus. Der absolute Wert oder Prozent-Wert der harmonischen Spannung wird angezeigt. Es ist möglich, bis zur 25 Harmonischen zu messen.
- Bei der Messung von Stromoberwellen drücken Sie die F3 (Fnc) Taste, um das Dropdown-Menü, das im seitlichen Bildschirm angezeigt ist, zu öffnen. Durch erneutes Drücken der F3 Taste wird der Cursor die verfügbaren Einträge durchgehen:
 - Max: Zeigt ständig den maximalen RMS Wert der H01 ausgewählten Stromoberwelle an;
 - Min: Zeigt ständig den minimalen RMS Wert der ausgewählten Stromoberwelle an;
 - Abs: Zeigt den Wert der Oberwellen in Ampere an;
 - %: Zeigt den Wert der Oberwellen als Prozentsatz der Fundamentalen an;
 - Rst: Löscht die abgespeicherten Max und Min Werte;
 - Esc: Kehrt zum normalen Messbetrieb zurück.

Da das Menü Funktionen mit verschiedenen Bedeutungen (Max-Min und Abs-%) enthält, muss man 2 x ins Menü eintreten: Einmal für die Anzeige von Absoluten oder % Werten und nochmals für die Aktivierung der Max oder Min Funktionen

WARNUNG

4. Drücken Sie die F4 (OK) Taste, um den ausgewählten Eintrag zu bestätigen. Der seitliche Bildschirm enthält ein Beispiel von Messung mit aktiver Max-Funktion. Im Display wird die aktive Funktion angezeigt.

5. Bei der Verwendung der HOLD-und Hintergrund-Beleuchtungsfunktion siehe § 4.2 und § 4.4

5.6. DYNAMIC INRUSH: STROMMESSUNG (MESSUNG DES ANLAUFSTROMS)

WARNUNG

- \bigwedge
- Der maximale messbare AC/AC+DC Strom beträgt 1000A. Versuchen Sie nicht, Ströme zu messen, die die Grenzwerte, die in diesem Handbuch angegebenen werden, übersteigen. Das Überschreiten der Grenzwerte könnte einen elektrischen Schock verursachen und das Messgerät beschädigen
- Es wird empfohlen, die Zange nur im Sicherheitsbereich der Handschutzvorrichtung zu halten (siehe Abb. 3)
- Alle Ströme < 2A werden auf Null gestellt.

Abb. 11: Dynamic Inrush Strommessung

17/01 – 15:34:23

Run

Α

Lim

2A

- 2. Drücken Sie F1 (Mod) um die Einschaltstrommessung Mod Dsp zwischen "Inrush 100A" (für Einschaltstöme <100A) oder FS 100A "Inrush 1000A" (für Einschaltströme <1000A) auszuwählen FS 1000A und drücken. Wählen Sie die Option "Nul", um die Null Hilfe Restmagnetisierung aufzuheben
- 3. Drücken Sie F3 (OK) um den Grenzwert für den Einschaltstrom und die Art der Messung, wie an der Seite Fix - LIM angezeigt, einzustellen
- 4. Drücken Sie die Taste F3 (Lim), um den Grenzwert für den Einschaltstrom festzulegen. Der folgende Bildschirm wird auf dem Display angezeigt
- 5. Drücken Sie die F2 oder F3 Taste um den Grenzwert für den Anlaufstrom auszuwählen. (Bei 2A ÷ 90A "Inrush 100A" und für den Bereich 5A ÷ 900A "Inrush 1000A
- 6. Drücken Sie F4 (OK) um zu bestätigen.
- 7. Setzen Sie den Leiter ins Zentrum der Zangenöffnung, damit Sie eine genauere Ablesung der Messwerte erhalten. Auf die vorhandenen Ausrichtungsmarkierungen achten (siehe Abb.11)
- 8. Drücken Sie die F4 (Run) Taste, um die Messung zur Erfassung des Einschaltstromes zu starten. Betätigen Sie die Taste F4 (Stp) um zu jeder Zeit die Erfassung des Einschaltstromes zu beenden. Nach dem Messvorgang (sobald der gemessene Wert über dem hinterlegten Grenzwert liegt), wird die Messung automatisch durch die Stromzange gestoppt und der maximale RMS Wert (in 100ms) wird angezeigt

Mod	Par	Max	Sav
Dуn	ami	.c II	RC
100ms			
	14	.3	Α
Fix -	LIM	2A	
17/01 -	- 15:34:	23]

9.	Drücken Sie F2 (Dsp) um folgende verfügbare Werte	Mod	Dsp	Max	Sav
	auszuwählen:	РК			
	> PK → Peak Wert in 1ms				
	Max RMS Wert in 16.7ms			•	_
	Max RMS Wert in 20ms		18	.2	Α
	Max RMS Wert in 50ms				
	Max RMS Wert in 100ms	Fix -	LIM	2A	
	Max RMS Wert in 150ms				
	Max RMS Wert in 200ms	17/01 -	– 15:34:	23]

17/01 - 15:34:23

WHT°

- 10. Drücken Sie die Taste F4 (Sav), um das Messergebnis im IRC-Speicher zu speichern (siehe § 4.4.6). Es ist möglich, <u>zu</u> <u>bis 20 IRC-Messungen</u> im Speicher zu speichern. Dann wird im unteren Teil des Displays die Meldung "MEM FULL" angezeigt ---- A Fix - LIM 2A
- 11. Drücken Sie **F4** (**Run**) um eine neue Messung zu starten oder bewegen Sie den Funktionswählschalter, um die Funktion zu wechseln

Abb. 12: DC Leistungsmessung

1. Wenn Sie den Funktionswahlschalter auf "W≂" stellen, wird Mod Par Fnc Nul der Bildschirm auf der Seite angezeigt. AC <42.5 Hz ---- kW ---- kVari -P 17/01-15:34:23

-ŴHT°

- Drücken Sie F1 (Mod) um das Drop-Down Menü zu öffen und wählen Sie die "DC" Option mit der gleichen Taste
 Drücken Sie F4 (OK) um zu bestätigen
- 3. Drücken Sie F4 (OK) um zu bestätigen

Mod	Par	Fnc	OK
AC+D	С	<42.	5 Hz
1P			1- 1-7
AC+D	С		ΚW
ЗP		k V	/ari
DC			kVΔ
Onli	ne		NVA
Hilf	е		
Nul		23]

- 4. Drücken Sie "Nul" Option um den Nullabgleich Mod Par Fnc durchzuführen. DC Wählen Sie die Option "Online", um die Echtzeitanzeige der Parameter mit WiFi-Verbindung des Instruments an einen PC und eine TopView-Software oder über die HTAnalysis 0.00 k₩ APP mit Anschluss an mobile Geräte zu aktivieren (siehe § 6.2) 17/01 - 15:34:23
- 5. Verbinden Sie die rote Messleitung mit der VΩ·¹) Eingangsbuchse, und die schwarze Messleitung mit der COM Eingangsbuchse. Die rote Messspitze mit dem "+" und die schwarze Messspitze mit dem "-" Leiter verbinden. Nun mit den Zangenbacken den + Leiter umschliessen. Dabei achten Sie auf die Stromrichtung, die vom Pfeil angegeben ist. Setzen Sie den Leiter ins Zentrum der Zangenöffnung, damit Sie eine genauere Ablesung der Messwerte erhalten. Auf die vorhandenen Ausrichtungsmarkierungen Bezug nehmen (siehe Abb. 2)
- 6. Der Wert der DC Leistung wird in kW angegeben. Drücken Sie F2 (Par), um das auf dem Bildschirm angezeigte Dropdown-Menü zu öffnen, und wählen Sie die Option "Volt/Curr" für die Gleichspannungs- und Strommessung. Bestätigen Sie mit F4 (OK). Der folgende Bildschirm wird angezeigt

lod	Par	Fnc	OK
	Leis Volt Ener	tung /Curr gie	kw
17/01 –	- 15:34:	23	

7. Der Bildschirm auf der Seite zeigt ein Beispiel von DC Strom

Mod
Par
Fnc

DC
B0.0
V

20.0
A

-M`HT°

OK

ਲ W

8. Drücken Sie F2 (Par), um das Dropdown-Menü zu öffnen, Mod das auf dem nebenstehenden Bildschirm angezeigt wird und wählen Sie die Option "Energie" für die DC-Energiemessung. Bestätigen Sie mit F4 (OK). Der folgende Bildschirm wird angezeigt)

Par

0.00

<u>Warten</u> 17/01 - 18:34:23

Fnc

k₩h

Par Fnc

Leistung

Energie

Volt/Curr

. . .

10. Die Meldung**"Warten**" wird auf dem Display angezeigt. Das Mod Gerät setzt sich in den Warte-Status und <u>aktiviert die</u> DC <u>Aufnahme beim nächsten zeitlichen"00 sec."-Momen</u>

11. Bei der aktiven Aufnahme wird die Meldung "Aufz." auf dem Mod Display angezeigt. Drücken Sie die Taste F3 (Fnc), um die Dc Option "Info" auszuwählen und bestätigen Sie mit der Taste F4 (OK), um sich die Aufzeichnungssinformationen anzuzeigen. Der folgende Bildschirm wird auf dem Display angezeigt

- 12. Die folgenden Parameter werden angegeben:
 - > Datum/Uhrzeit des Beginn der Aufzeichnung
 - Gewähltes Messintervall
 - Anzahl der gespeichertenMessintervalle bis zu diesem Zeitpunkt
 - Restliche maximale Aufzeichnungsdauer

-M`HT°

 $\kappa w h$

- 13. Drücken Sie die Taste F3 (Fnc), wählen Sie die Option Mod
 "Stop Log" und bestätigen Sie mit der Taste F4 (OK), um die Energiemessung zu beenden. Die Aufnahme wird automatisch im internen Speicher des Instruments gespeichert und die Referenz ist im "Speicher REC" des Instruments sichtbar (siehe § 4.4.5)
- 14. Bei der DC Leistungsmessung drücken Sie die F3 (Fnc) Mod Taste, um das Dropdown-Menü, das im seitlichen Bildschirm angezeigt ist, zu öffnen. Durch erneutes Drücken der F3 Taste wird der Cursor die verfügbaren Einträge durchgehen:
 - **Max**: Zeigt ständig den maximalen Wert des gemessenen Parameters an
 - **Min**: Zeigt ständig den minimalen Wert des gemessenen Parameters an
 - RST: Löscht die abgespeicherten Max und Min Werte
 - Start Log: Starten einer neuen Aufzeichnung
 - Snapshot: Es ermöglicht das Speichern eines Momentanwertes, dessen Referenz im "Speicher REC" des Instruments sichtbar ist (siehe § 4.4.5)
 - Download: Es ermöglicht die WiFi-Datenübertragung auf den PC von gespeicherten Daten über TopView Software oder auf mobile Geräte über die APP HTAnalysis (siehe § 6.1)
 - Esc: es geht zurück in einen normalen Messmodus
- 15. Drücken Sie die **F4** (**OK**) Taste, um den ausgewählten Mod Eintrag zu bestätigen. Der seitliche Bildschirm enthält ein Beispiel einer Messung mit aktiver Max-Funktion. Im Display wird die aktive Funktion angezeigt.

 17/01 - 18:35:00

 Mod
 Par

 Fnc
 OK

 Min
 RST

 Start
 Log

 Snapshot
 Download

 Esc
 17/01 - 15:34:23

Par Fnc

Info

- 17

Esc

6

Req

Stop Log

,	Mod	Dar	Fnc	
•	MOG	IUI	THC	
۱	DC			
1	Max			
		ົ	10	1- 1-7
		2.	40	ΚW
	17/01 -	- 15:34:	23]

16.Bei der Verwendung der HOLD-und Hintergrund-Beleuchtungsfunktion siehe § 4.2 und § 4.4

-WHT°

Abb. 13: Messung von AC/AC+DC (1- oder 3 – Phasen)

 Wenn Sie den Funktionswahlschalter auf "W
[™] stellen, wird Mod der Bildschirm auf der Seite angezeigt.

Mod	Par	Fnc	
AC+D	C ·	<42.5	Ηz
-			k₩
-		kV	/ari
-			kVA
		1 P	
17/01 -	- 15:34:	23]

-M`HT°

- Drücken Sie F1 (Mod) um das Drop-Down Menü zu öffnen und wählen Sie die "AC+DC 1P" (Einphasige Messung) oder "AC+DC 3P" (ausgewogene Dreiphasige Messung) Optionen mit der gleichen Taste. Die "1P" oder "3P"Symbole werden angezeigt
- 3. Drücken Sie F4 (OK) um zu bestätigen

Mod	Par	Fnc	OK
AC+D AC+D DC Onli: Hilf Nul Esc	C 1P C 3P ne e	42. k\	^{5 Hz} kW /ari kVA
		}]

- 4. Drücken Sie "**Nul**" Option um den Nullabgleich durchzuführen
- Wählen Sie die Option "Online", um die Echtzeitanzeige der Parameter mit WiFi-Verbindung des Instruments an einen PC und eine TopView-Software oder über die HTAnalysis APP mit Anschluss an mobile Geräte zu aktivieren (siehe § 6.2)

ſ	Mod	Dar	Fnc	
l	MOU	Pal	FIIC	
	AC+D	C ·	<42.5	Ηz
	-			k₩
	-		k V	/ari
	-			kVA
	17/01 -	- 15:34:	23]

- Verbinden Sie die rote Messleitung mit der VΩ[•]) Eingangsbuchse, und die schwarze Messleitung mit der COM Eingangsbuchse, und verbinden Sie das Gerät, wie in der Abb. 13 beschrieben wird. Setzen Sie den Leiter ins Zentrum der Zangenöffnung, damit Sie eine genauere Ablesung der Messwerte erhalten. Auf die vorhandenen Ausrichtungsmarkierungen Bezug nehmen (siehe Abb. 13).
- AC Leistungen (Wirk, Schein- und 7. Die Werte der Blindleistung) werden angezeigt. Das Messgerät ermöglicht möglichen auch eine Erfassung der Gleichstromkomponenten. Das kann sehr hilfreich für Messungen der pulsförmigen Signale sein, in der Regel von nicht-linearen Lasten (z.B: Schweißer, elektrische Öfen, etc) Drücken Sie F2 (Par) und wählen mit der gleichen Taste die "PF-DPF" Option für den Leistungsfaktor (PF) und Cosphi (DPF) Messung. Bestätigen Sie mit F4 (OK). Der folgende Display wird angezeigt:
- 8. Der Bildschirm auf der Seite zeigt ein Beispiel der Messung Mod Par von Leistungsfaktor und Cosphi.(i steht für induktiv, c für AC+DC capazitiv)

Mod	Par	Fnc	OK				
_	P-Q-S Pf-dl Volt, Span Stron Energ	S Pf /Curr nung m Har gie	Har				
L		ΙP					
17/01 -	17/01 – 15:34:23						

ing	Mod	Par	Fnc	Nul
für	AC+D	С	50.0	Ηz
	Ρf	0	.94	i
	ЧРf	0	<u>م</u> ۸	÷
	ur I	0	• • •	-
			1 P	
	17/01 -	- 15:34:	23	

- 9. Drücken Sie F2 (Par) um das Drop-Down Menü zu öffnen Mod Par Fnc OK und wählen Sie die "Volt/Curr" Option für die Spannungs-P-O-S und Strommessung. Bestätigen Sie mit F4 (OK). Der PF-DPF Volt/Curr folgende Display wird angezeigt. Spannung Har Strom Har Energie 17/01 - 15:34:23
- 10.Der Bildschirm auf der Seite zeigt ein Beispiel von AC Mod Spannung und Strom. ΑC

11. Drücken Sie F2 (Par) um das Drop-Down Menü zu öffnen	Mod	Par	Fnc	OK
und wählen Sie "Spannung Har" um die AC+DC Spannung		P-0-S		
der Harmonischen Werte anzuzeigen. Bestätigen Sie mit F4		PF-dP:	£	
(OK). Der folgende Display wird angezeigt		Volt-0	Curr	
		Spann	ung Ha	ar
		Strom	Har	
		Energ	ie	
		Esc		
	17/0 ⁻	1 – 15:34:	23	

Par

Fnc

►

Par

17/01 - 15:34:23

229.7

99.6

1 P

Fnc

50.0 Hz

Nul

V

Α

12. Drücken Sie die Tasten F1 (◄) or F4 (►), um den Cursor über den Graphen zu bewegen und wählen Sie die zu messenden Harmonischen aus. Der absolute Wert oder Prozent-Wert der harmonischen Spannung wird angezeigt. Es ist möglich, bis zur 25 Harmonischen zu messen.

13. Drücken Sie F2 (Par) um das Drop-Down Menü zu öffnen Mod und wählen Sie "Strom Har" um die Strom Harmonischen Werte anzuzeigen. Bestätigen Sie mit F4 (OK). Der folgende Display wird angezeigt.

17/01 – 15:34:23

15. Bei der Messung von Spannungs- oder Stromoberweller drücken Sie die F3 (Fnc) Taste, um das Dropdown-Menü das im seitlichen Bildschirm angezeigt ist, zu öffnen. Durcl erneutes Drücken der F3 Taste wird der Cursor die verfügbaren Einträge durchgehen:

Es ist möglich, bis zur 25 Harmonischen zu messen

- Max: Zeigt ständig den maximalen RMS Wert de ausgewählten Spannungs- oder Stromoberwelle an;
- Min: Zeigt ständig den minimalen RMS Wert de ausgewählten Spannungs- oder Stromoberwelle an;
- Abs: Zeigt den Wert der Oberwellen in Ampere oder Volt an;
- %: Zeigt den Wert der Oberwellen als Prozentsatz der Fundamentalen an;
- Rst: Löscht die abgespeicherten Max, Min Werte;
- Esc: Kehrt zum normalen Messbetrieb zurück.

WARNUNG

Da das Menü Funktionen mit verschiedenen Bedeutungen (Max-Min und Abs-%) enthält, muss man doppelt ins Menü eintreten: Einmal für die Anzeige von Abs. oder %, und nochmals für die Aktivierung der Max oder Min Funktionen.

16.Drücken Sie F4 (OK), um die ausgewählte Einstellung zu < speichern. Ihnen wird hier ein Beispiel für Stromoberschwingungsmessungen mit aktiver Max.Funktion angezeigt. Der Display zeigt die aktivierte Funktion.

17. Drücken Sie F2 (Par) um das Drop-Down Menü zu öffnen Mod "Energie" und wählen Sie die Option die für Energiemessung. Bestätigen Sie mit F4 (OK). Folgender Display wird angezeigt:

n	◀	Par	Fnc	OK
i, h e			Max Min Abs %	
er	H01 Thd	1 I	Rst Esc) A %
er				
	17/01 -	- 15:34:	23	I

WHT°

18. Drücken Sie F3 (Fnc), wählen Sie dieOption "Start Log" und Mod Par Fnc OK bestätigen Sie mit F4 (OK), um die Energiemessung mit AC+DC Max dem eingestelltem Messintervall zu aktivieren (siehe Min RST Start Loq Snapshot Download Esc 17/01 - 15: 19. Die Meldung "Warten" wird auf dem Display angezeigt. Das Mod Par Fnc Gerät setzt sich in den Warte-Status und aktiviert die AC+DC Aufnahme beim nächsten zeitlichen"00 sec."-Momen. k₩h kVarih kVarch Warten 17/01 - 15:34:23 Ī 20. Bei der aktiven Aufnahme wird die Meldung "Aufz." auf dem Mod | Par Enc Display angezeigt. Drücken Sie die Taste F3 (Fnc), um die AC+DC Stop Log Option "Info" auszuwählen und bestätigen Sie mit der Taste Info 0.00 Esc die Aufzeichnungssinformationen (OK), um sich **F4** 0.00 anzuzeigen. Der folgende Bildschirm wird auf dem Display angezeigt 0.00 kVarch <u>Aufz</u>. 17/01 - 15:34:23 21. Die folgenden Parameter werden angegeben: Esc Datum/Uhrzeit des Beginn der Aufzeichnung Start: 17/01- 18:35:00 Gewähltes Messintervall Intervall: 005 > Anzahl der gespeichertenMessintervalle bis zu diesem Perioden: 00054 Zeitpunkt Auton.: 00d/10h Restliche maximale Aufzeichnungsdauer 17/01 - 18:37:43 22. Drücken Sie die Taste F3 (Fnc), wählen Sie die Option Mod Par Fnc "Stop Log" und bestätigen Sie mit der Taste F4 (OK), um AC+DC Stop Loq die Energiemessung zu beenden. Die Aufnahme wird Info automatisch im internen Speicher des Instruments Esc gespeichert und die Referenz ist im "Speicher REC" des $2.2^{1} \pm 2$ к w п Instruments sichtbar (siehe § 4.4.5) 0.841 kVarih 0.000 kVarch Aufz 17/01 - 18:35:00

-ŴHT

- 23.Bei der DC Leistungsmessung drücken Sie die **F3** (**Fnc**) Taste, um das Dropdown-Menü, das im seitlichen Bildschirm angezeigt ist, zu öffnen. Durch erneutes Drücken der **F3** Taste wird der Cursor die verfügbaren Einträge durchgehen:
 - **Max**: Zeigt ständig den maximalen Wert des gemessenen Parameters an
 - **Min**: Zeigt ständig den minimalen Wert des gemessenen Parameters an
 - RST: Löscht die abgespeicherten Max und Min Werte
 - Start Log: Starten einer neuen Aufzeichnung
 - Snapshot: Es ermöglicht das Speichern eines Momentanwertes, dessen Referenz im "Speicher REC" des Instruments sichtbar ist (siehe § 4.4.5)
 - Download: Es ermöglicht die WiFi-Datenübertragung auf den PC von gespeicherten Daten über TopView Software oder auf mobile Geräte über die APP HTAnalysis (siehe § 6.1)
 - Esc: es geht zurück in einen normalen Messmodus
- 24. Drücken Sie die F4 (OK) Taste, um den ausgewählten Eintrag zu bestätigen. Der seitliche Bildschirm enthält ein Beispiel einer Messung mit aktiver Max-Funktion. Im Display wird die aktive Funktion angezeigt.
- 25. Bei der Verwendung der HOLD-und Hintergrund-Beleuchtungsfunktion siehe § 4.2 und § 4.4

Mod	Par	Fnc	OK			
	Max Min RST Star Snap Dowr Esc	rt Lo shot load	g			
17/01 – 15:34:23						

	Mod	Par	Fnc	
,	AC+D Max	С	50.0	Ηz
		8 0 2 0	.0 .0	V A
	17/01 –	- 15:34:	23]

Abb. 14: Widerstandsmessung

-MhHT°

- 2. Drücken Sie **F1** (**Mod**) um das Drop-Down Menü zu öffnen Mod und wählen Sie die "**Widerstand**" Option mit der gleichen Taste
- 3. Drücken Sie F4 (OK) um zu bestätigen

Fnc

Mod

- Verbinden Sie die rote Messleitung mit der VΩ[•]) Eingangsbuchse, und die schwarze Messleitung mit der COM Eingangsbuchse, und verbinden Sie das Gerät, wie in der Abb. 14 beschrieben wird.
- 5. Der Bildschirm zeigt ein Beispiel der Widerstandsmessung.

- 6. Drücken Sie **F1** (**Mod**) um das Drop-Down Menü zu öffnen Mod Fnc und wählen Sie die "**Durchgang**" Option mit der gleichen Widerstar Taste
- Drücken Sie F4 (OK) um zu bestätigen. Das Messgerät wechselt in den Durchgangsprüfung-Modus und wird wie folgt angezeigt. Für Informationen zum Festlegen der Höchstgrenze für die Durchgangsprüfung finden Sie in § 4.4.4
- Bei der Widerstands- oder Durchgangsmessung drücken Sie Mod die F2 (Fnc) Taste, um das Dropdown-Menü, das im seitlichen Bildschirm angezeigt ist, zu öffnen. Durch erneutes Drücken der F2 Taste wird der Cursor die verfügbaren Einträge durchgehen:
 - **Max**: Zeigt ständig den maximalen Wert des gemessenen Widerstands an;
 - **Min**: Zeigt ständig den minimalen Wert des gemessenen Widerstands an
 - RST: Löscht die abgespeicherten Max und Min Werte
 - Esc: Kehrt zum normalen Messbetrieb zurück
- Drücken Sie die F4 (OK) Taste, um den ausgewählten Mod Eintrag zu bestätigen. Der seitliche Bildschirm enthält ein Beispiel von Messung mit aktiver Max-Funktion. Im Display wird die aktive Funktion angezeigt.
- 10. Bei der Verwendung der HOLD-und Hintergrund-Beleuchtungsfunktion siehe § 4.2 und § 4.4

17/01 - 15:34:23

kVA

OK

1 P

Start Log Snapshot Download

Max

Min RST

Esc

Warten

17/01 - 18:34:23

17/01 - 18.0-1.20

6. VERBINDUNG VON INSTRUMENTEN AUF PC UND MOBILGERÄTE

Die Funktion WiFi-, muss während der Ausführung der Operationen aktiviert sein. Vor dem Anschließen ist es notwendig, dass die mitgelieferte TopView-Management-Software auf dem PC installiert ist und das eine aktive und funktionierende WiFi-Schnittstelle vorhanden ist. Das Gerät verwendet WiFi-Verbindung in den folgenden Situationen:

- Download der im REC- und IRC-Speicher gespeicherten Daten (siehe § 4.4.5 und § 4.4.6) des Instruments (Aufnahmen, Snapshots und Einschaltströme) über die **TopView-Software**
- Echtzeit-Auslesen der mit der TopView-Software gemessenen Parameter

6.1. DOWNLOAD DATEN

- 1. Positionieren Sie den Auswahlschaltersauf "**W**=", es Mod Par Fnc erscheint der Bildschirm nebenstehend AC+DC <42.5 Hz k₩ kVari
- 2. Drücken Sie die Taste F3 (Fnc), wählen Sie dieOption Mod Par Fnc "Download" und bestätigen Sie die Taste F4 (OK). Der AC+DC nebenstehende Bildschirm wird angezeigt

3. Die Meldung "Warten" gibt an, dass das Gerät die interne WiFi-Verbindung aktiviert. Nach einigen Sekunden wird die Meldung "Download" auf dem Display angezeigt, um anzuzeigen, dass die WiFi-Verbindung auf dem Gerät aktiv ist, wie im nebenstehendeb Bildschirm angegeben

17/01 - 18:34:23 4. Drücken Sie die Taste F3 (Esc), um die WiFi-Verbindung zu Esc deaktivieren und zur normalen Messung zurückzukehren Download 17/01 - 18:34:23

5. Suchen Sie nach dem "HT9023_xxxxxxx"Instrument im WiFi-Netz das auf dem PC angezeigt wird und verbinden Sie es wie <u>in</u> der folgenden

NETGEAR N600 Wireless USB-Adapter	genie [™]	Version der Adapter-Software: 2.0.0.1 Sprachauswahl:
WNDA3100v2		Deutsch
Startseite 🕨	HT9023_19110045	Verbunden
Netzwerk suchen	Sicherheitsfunktion aktiviert (WPA2-PSK)	
	Sicherheitsfunktion aktiviert (WPA2-PSK)	
	HT-Guest	
	HT-Guest	
	HT-Italia Manuell mit einem Netzwerk verbinden (Für ein verborgenes Netzwerk) 📀	Aktualisieren
		Hilfe
Netzwerk: (D0:CF:SE:SB:FA:54)	1235	Kant 11 65MBK/s Signal

Abb. 15: WiFi-Verbindung des Instruments zum PC (Beispiel)

6. Starten Sie die TopView-Software, öffnen Sie den Abschnitt "Verbindung PC → Gerät", führen Sie den Befehl "Suche Gerät" aus und überprüfen (siehe Abb.16)

🕂 Topview: Verbindung 🛛	PC <> Gerät			
Gerät	Gerätedaten Aktives Gerät HT9023 Seriennummer 19110045 FW Version 1.01	Geräte Verbundene Ger HT9023	Auswählbar GSC 59 GSC 60 HT 2052 HT 7051 HT9022 HT9023	e Geräte
AC/DC Leistungsmesszange Fw Aktualisieren	Schnittelle Port Wifi Baudrate -1 Autoset NOS	Gerät entfernen Befehle © Daten herunterladen © Gerät konfigurieren © Zeige aktuellen Mess © Gerät online © Marker Manager © Messungen löschen	gerätestatu	s
Gerät erkannt < HT902	3 >Verbunden mit WiFi			
	Cuplaine		Zurück	weiter
Aktives Gerat H19023	Funktion auswa	nien VViFi	J	-1 ///

Abb. 16: Instrumentenerkennung in der Software TopView

-M`HT°

- 7. Klicken Sie auf die Schaltfläche **"Next**", um das Download-Fenster zu öffnen (siehe Abb.17 Abb. 17: Auswahldaten zum Download
- 8.). Überprüfen Sie die Messungen, die Sie herunterladen möchten, wählen Sie den Pfad, wo Sie sie speichern möchten und klicken Sie auf die Schaltfläche "Herunterladen", um die Übertragung zu starten

:\S	Softv	vare_HT\Topview	\Data\HT90	23			Drowse	
	Sel.	Daten Typ	Start	Stop	Kommentar	Heruntergelad	Dateiname	Ŀ
Ľ	•	lueva captura de pan	04/02/2020 16			Nein	202002041625_1_HT9023_SAMPLING	
2	•	lueva captura de pan	04/02/2020 16			Nein	202002041625_2_HT9023_SAMPLING	
3	•	luevo Reg.	04/02/2020 16	04/02/2020 16		Ja	202002041626_202002041626_3_HT902	2
4	•	luevo Reg.	04/02/2020 16	04/02/2020 16		Ja	202002041628_202002041628_4_HT902	2
5	•	luevo Reg.	28/04/2020 14	28/04/2020 14		Ja	202004281423_202004281424_5_HT902	2
6	•	luevo Reg.	04/05/2020 13	04/05/2020 13		Nein	202005041358_202005041358_6_HT902	2
7	•	luevo Reg.	04/05/2020 13	04/05/2020 13		Nein	202005041359_202005041359_7_HT902	2
8		Corriente de pico	03/02/2020 16	03/02/2020 16		Nein	202002031629_202002031629_201_HT9	к_
9	•	Corriente de pico	03/02/2020 16	03/02/2020 16		Nein	202002031630_202002031630_202_HT9	X
0		Corriente de pico	03/02/2020 16	03/02/2020 16		Nein	202002031637_202002031637_203_HT9	ж
1	•	Corriente de pico	03/02/2020 16	03/02/2020 16		Nein	202002031639_202002031639_204_HT9)(
2	•	Corriente de pico	04/02/2020 14	04/02/2020 14		Nein	202002041434_202002041434_205_HT9	ж
3	•	Corriente de pico	04/02/2020 14	04/02/2020 14		Nein	202002041434_202002041434_206_HT9)(
4	•	Corriente de pico	04/02/2020 14	04/02/2020 14		Nein	202002041435_202002041435_207_HT9	ж
5	•	Corriente de pico	04/02/2020 14	04/02/2020 14		Nein	202002041435_202002041435_208_HT9	
-	_	-						

Abb. 17: Auswahldaten zum Download

- 9. Die Software ermöglicht es, die folgenden Arten von Dateien zu speichern:
 - ➢ HED und PER Erweiterung → Anzeigeparameter einer Aufzeichnung (RECORDING)
 - > **DAT** Erweiterung \rightarrow Anzeigeparameter von Momentaufnahmen (SAMPLING)
 - > **IRC** Erweiterung \rightarrow Grafische Anzeige von Einschaltströmen (IRC)
- 10. Öffnen Sie den Abschnitt "**Datenanalyse**" von TopView → klicken Sie auf den Befehl "**Importieren**", um die heruntergeladenen Dateien auszuwählen und zu öffnen

👉 Topview: Datenanalyse					_ 🗆 ×
Aktives Gerät Datenauswe	ertung	Geräteau	uswahl		
	tives Gerät IT9023 iennummer 9110045 W Version 1.01	HT90: Wähl	le neues Gerä	Ger	ät entferne
Dateiname	Datum		Datentyp		
201912131041_201912131041_201_HT9023_	R 03/02/2020 16:55		IRC		
201912131044_201912131044_202_HT9023_	R 03/02/2020 16:55		IRC		
201912131045_201912131045_203_HT9023_	R 03/02/2020 16:55		IRC		
201912131045_201912131045_204_HT9023_	R 03/02/2020 16:55		IRC		
202001291641_1_HT9023_SAMPLING.HED	03/02/2020 16:54		SAMPLING		
202001291642_202001291642_2_HT9023_R	EC 03/02/2020 16:54		RECORDING		
202001291655_202001291657_3_HT9023_RE	EC 03/02/2020 16:54		RECORDING		
202001291704_202001291712_4_HT9023_RE	EC 03/02/2020 16:54		RECORDING		
202001201000 202001201000 C UT0022 DI	C 02/02/2020 10-54		DECODDING		
C:\Software_HT\Topview\Data\HT90)23				Suche
Help	Importie	ren		Zurück	Weiter

Abb. 18: Öffnen der auf den PC heruntergeladenen Datei

-ŴHT°

6.2. REAL-TIME READINGS

- Positionieren Sie den Drehwahlschalter auf "**?W**≂",wählen Sie die Taste F4 (OK) mit der Taste F1 (Mod) und F4 (OK)Taste die "AC+DC 1P", "AC+DC 3P" oder "DC" Messfunktion und drücken Sie die Taste F4 (OK), um zu bestätigen
- 2. Drücken Sie **F1 (Mod)**, wählen Sie die Option "**Online**" und drücken Sie zur Bestätigung die Taste **F4 (OK)**
- Die Meldung "Warten" zeigt an, dass das Gerät die interne WiFi-Verbindung aktiviert

Mod	Par	Fnc	OK
AC+D AC+D DC Onlin Help Zro Esc	C 1P C 3P ne	<42. k\	5 Hz kW Vari kVA
		3	l

 Nach ein paar Sekunden wird im unteren Teil des Displays die "Onl. " Meldung angezeigt, um anzuzeigen, dass die WiFi-Verbindung auf aktiv ist bei dem Messgerät

Mod	Par	Fnc	OK
	AC	<42.	5 Hz
-			k₩
-		k١	/ari
-			kVA
Onl.			
17/01 -	- 18:34:	23	I

- 5. Schließen Sie das Gerät an das zu prüfende System an, wie in § 5.7 oder § 5.8
- 6. Schließen Sie das Gerät über WiFi-Verbindung und TopView-Software an einen PC an und führen Sie die Geräteerkennung durch
- Öffnen Sie den Abschnitt "Verbindung PC → Gerät" und wählen Sie die Option "Gerät on line", wie in der folgenden Abb.19 gezeigt

🗲 Topyiewy Verbindung - [)C <> Corät		
Gerät	Gerätedaten Aktives Gerät HT9023 Seriennummer 19110045 FW Version 1.01	Geräte Verbundene Ger HT9023 COMBI 419 COMBI 419E COMBI 419E COMBI 419S COMBI 419S COMBI 420S COMBI 420S COMBI 420S COMBI 421	
AC/DC Leistungsmesszange	Schnittelle Port Wifi Baudrate -1 Autoset NOSE	Gerät entfernen Suche Ger Befehle O Daten herunterladen O Gerät konfigurieren O Zeige aktuellen Messgerätestatus O Gerät online O Marker Manager O Messungen löschen O	ât
Gerät erkannt < HT902	3 > Verbunden mit Com	1 Baud = -1 Zurück	weiter
Aktives Gerät HT9023	Funktion ausw	vählen WiFi -1	

Abb. 19: Echtzeit-Verbindung des Instruments

8. Klicken Sie auf die Schaltfläche **"Next**", um die Echtzeit-Anzeige von Werten in Form von Tabellen, Wellenformen, Harmonischen Diagrammen und Vektordiagrammen zu öffnen, wie in der Abb.20

Abb. 20: Echtzeit-Anzeige von Parametern

 Drücken Sie die Taste F1 (Mod), wählen Sie dieOption "Esc" und drücken Sie die F4 (OK), um die Auswahl zu bestätigen, um den "OnLine"-Modus zu verlassen. Alternativ können Sie den Selektor an eine andere Position stellen

6.3. VERBINDUNG ZU MOBILEN GERÄTEN

Das Gerät kann über WiFi mit Android/iOS-Smartphones und/oder Tablet-Geräten zur Übertragung von Messdaten über **HTAnalysis** APP verbunden werden:

- 1. Herunterladen und Installieren der APP HTAnalysis auf dem gewünschten Mobilgerät (Android/iOS
- 2. Stellen Sie das Gerät über WiFi in den Datenübertragungsmodus (siehe § 6.1)
- 3. Informationen zum Verwalten des Vorgangs finden Sie in den HTAnalysis-Anweisungen

7. WARTUNG UND PFLEGE

7.1. ALLGEMEINE INFORMATIONEN

- 1. Das Gerät, das Sie gekauft haben, ist ein Präzisionsinstrument. Überschreiten Sie niemals die technischen Grenzwerte in dieser Bedienungsanleitung bei der Messung oder bei der Lagerung, um mögliche Beschädigungen oder Gefahren zu vermeiden.
- 2. Benutzen Sie das Gerät nicht in Umgebungen mit hohem Luftfeuchtigkeitspegel oder hohen Temperaturen. Setzen Sie es nicht direktem Sonnenlicht aus.
- 3. Schalten Sie das Gerät nach Gebrauch wieder aus. Falls das Gerät für eine längere Zeit nicht benutzt werden wird, entfernen Sie die Batterien, um Flüssigkeitslecks zu vermeiden, die die innere Schaltkreise des Gerätes beschädigen könnten.

7.2. BATTERIEWECHSEL

Nur Fachleute oder ausgebildete Techniker sollten dieses Verfahren durchführen. Entfernen Sie alle Messleitungen oder zu messende Leiter aus den Zangenbacken, bevor die Batterien gewechselt werden

WARNUNG

- 1. Drehen Sie den Funktionswahlschalter in die OFF-Stellung.
- 2. Entfernen Sie die Messleitungen und zu messende Leiter aus den Zangenbacken.
- 3. Schrauben Sie das Batteriefach auf und entfernen Sie den Deckel.
- 4. Entfernen Sie die alten Batterien aus dem Fach.
- 5. Ersetzen Sie die alten Batterien durch zwei neue Batterien von demselben Typ (1,5V LR 03 AAA). Achten Sie dabei auf die richtige Polarität.
- 6. Setzen Sie das Batteriefach wieder auf und schrauben Sie es fest.
- 7. Entsorgen Sie die gebrauchten Batterien umweltgerecht. Verwenden Sie dabei die geeigneten Behälter zur Entsorgung.

7.3. REINIGUNG

Zum Reinigen des Gerätes kann ein weiches trockenes Tuch verwendet werden. Benutzen Sie keine feuchten Tücher, Lösungsmittel oder Wasser, usw.

7.4. LEBENSENDE

WARNUNG: Dieses Symbol zeigt an, dass das Gerät und die einzelnen Zubehörteile fachgemäß und getrennt voneinander entsorgt werden müssen.

8. TECHNISCHE DATEN

8.1. TECHNISCHE EIGENSCHAFTEN

Die Genauigkeit ist angegeben als ±[%Anz. +(dgt* Auflösung)] auf 23°C±5°C, <80RH

DC Spannung

Messbereich [V]	Auflösung [V]	Genauigkeit	Überlastschutz
-1500.0 ÷ 1500.0	0.1	±(1.0%Anz+3dgt)	1500VDC

Eingangswiderstand: 1MΩ; Absolutspannungswerte <0.3 V werden zurückgesetzt

AC, AC+DC TRMS Spannung

Messbereich [V]	Auflösung [V]	Genauigkeit	Überlastschutz
1.0 ÷ 999.9	0.1	±(1.0%Anz+3dgt)	1000VDC/ACrms

Eingangswiderstand: 1M Ω , Grundwelle: 50/60Hz ± 15%, Bandbreite: 42.5Hz ÷ 1725Hz

Max. Crest-Faktor: 3 für Spannung ≤470Vrms, 1.41 für Spannung > 470Vrms

RMS Spannungswerte <1 V und mit einer Frequenz außerhalb des Bereichs von 42,5 Hz bis 1725 Hz werden auf Null gesetzt

DC Spannung: MAX/MIN/CREST (+/-)

Fun	zione	Messbereich [V]	Auflösung [V]	Genauigkeit	Tempo di risposta
MAX	K,MIN	1500 0 . 1500 0	0.1	1/2 = 50/4 pz $1 = 5 dat)$	200ms
CR	EST	-1500.0 ÷ 1500.0	0.1	\pm (3.5%Anz +50gl)	1ms

Die berechneten absoluten Spannungswerte von MAX/MIN/CREST <0,3 V werden zurückgesetzt ; Eingangswiderstand: $1M\Omega$

AC, AC+DC Spannung: MAX/MIN/CREST

Funzione	Messbereich [V]	Auflösung [V]	Genauigkeit	Tempo di risposta
MAX,MIN	1.0 ÷ 999.9	0 1	1/2 = 50/4 pz $1 = 5 dat)$	200ms
CREST	-1500.V ÷ 1500.0	0.1	\pm (3.5%Anz +50gl)	1ms

Eingangswiderstand: 1M Ω , Grundwelle: 50/60Hz ± 15%, Bandbreite: 42.5Hz ÷ 1725Hz

Max. Crest-Faktor: 3 für Spannung ≤470Vrms, 1.41 für Spannung > 470Vrms

MAX/MIN Spannungswerte <1V, CREST Spannungswerte <1.4V und Spannungswerte von MAX/MIN/CREST <0,3 V werden zurückgesetzt

DC Strom

Messbereich [A]	Auflösung [A]	Genauigkeit	Überlastschutz
0.1 ÷ 999.9	0.1	±(2.0% Anz +5dgt)	1000ADC/ACrms

AC, AC+DC TRMS Strom

Messbereich [A]	Auflösung [A]	Genauigkeit	Überlastschutz
1.0 ÷ 999.9	0.1	±(1.0% Anz +5dgt)	1000ADC/ACrms

Grundwelle: 50/60Hz \pm 15%, Bandbreite: 42.5Hz \div 1725Hz

Max. Crest-Faktor: 3 für Stromwerte ≤515A , 1.41 für Stromwerte >515Arms

RMS Stromwerte <1A und mit einer Frequenz außerhalb des Bereichs von 42,5 Hz bis 1725 Hz werden auf Null gesetzt

DC/AC TRMS Strom: MAX/MIN

Funzione	Messbereich (A)	Auflösung (A)	Genauigkeit	Ansprechzeit
MAX,MIN	1.0 ÷ 999.9	0.1	±(3.5% Anz +5dgt)	1sec

Grundwelle: 50/60Hz \pm 15%, Bandbreite: 42.5Hz \div 1725Hz

Max. Crest-Faktor: 3 für Stromwerte ≤515A , 1.41 für Stromwerte >515Arms

RMS Stromwerte <1A und mit einer Frequenz außerhalb des Bereichs von 42,5 Hz bis 1725 Hz werden auf Null gesetzt

Widerstand und Durchgangsprüfung

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit	Überlastschutz
0.0 ÷ 199.9	0.1		
200 ÷ 1999	1	(2.00) (Apple Edat)	1000\/DC/ACrma
2.00k ÷ 19.99k	0.01k	\pm (2.0% Anz +50gt)	TOOVDC/ACIIIIS
20.0k ÷ 29.9k	0.1k		

Summer an falls R \leq RLIM, RLIM Bereich: 1 \div 150 Ω

Frequenz (mit Messleitungen / mit der Zange)

Messbereich [Hz]	Auflösung [Hz]	Genauigkeit	Überlastschutz
425,600	0.1	$\downarrow (1.00/Apz, Edat)$	1500VDC
42.3 ÷ 09.0	0.1	±(1.0%Anz +5dgt)	1000A DC/ACrms

Spannungsbereich für Frequenzmessung: 0.5 ÷ 1000V / Spannungsbereich für Frequenzmessung mit der Zange: 1 ÷ 1000A

Phasenfolge und Phasengleichheit mit einer Messspitze Messbereich [V] Frequenza [Hz] Überlastschutz 1000VDC/ACrms $100 \div 1000$ 45 ÷ 66 Eingangswiderstand: 1.3MΩ Inrush (DC, AC+DC TRMS) Strom Überlastschutz Messbereich [A] Auflösung [A] Genauigkeit (*) $1.0 \div 99.9$ 0.1 \pm (2.0%Anz + 5dgt) 1000ADC/ACrms $10 \div 999$ 1 Crest faktor: 3. Beispiel Freg: 4kHz, Ansprechzeit: Peak: 1ms, Max RMS: Sel. calc. on: 16.7, 20, 50, 100, 150, 200ms Genauigkeit für frequenz: DC, (50 ± 0.5) Hz, (60 ± 0.5) Hz **DC** Leistung Messbereich [kW] Auflösung [kW] Genauigkeit (*) $0.00 \div 99.99$ 0.01 ±(3.0%Anz +3dgt) $100.0 \div 999.9$ 0.1 (*) Genauigkeit definiert bei: Spannung > 10V, Strom ≥ 2A Wirk- und Scheinleistung AC, AC+DC TRMS Messbereich [kW], [kVA] Auflösung [kW], [kVA] Genauigkeit (*) 0.001 $0.001 \div 9.999$ (**) 10.00 ÷ 99.99 0.01 ±(3.0%Anz +10dgt) $100.0 \div 999.9$ 0.1 (*) Genauigkeit definiert bei: Sinuswelle 42.5..69Hz, Spannung >10V, Strom ≥10A, Pf ≥ 0.5 (**) Für Strom <10A Hinzufügen ±7%Anz.zu Genauigkeit Blindleistung AC (AC + DC TRMS) Messbereich [kVAR] Auflösung [kVAR] Genauigkeit (*) 0.001 0.001 ÷ 9.999 (**) $10.00 \div 99.99$ 0.01 ±(3.0%Anz +10dgt) $100.0 \div 999.9$ 0.1 (*) Genauigkeit definiert bei: Sinuswelle 42.5..69Hz, Spannung > 10V, Strom ≥ 10A, Pf ≤ 0.9 (**)Für Strom <10A Hinzufügen ±4%Anz.zu Genauigkeit Wirkenergie AC (AC + DC TRMS) Auflösung [kWh] Genauigkeit (*) Messbereich [kWh] 0.001 $0.001 \div 9.999$ (**) 0.01 ±(3.0%Anz +10dgt) $10.00 \div 99.99$ $100.0 \div 999.9$ 0.1 (*) Genauigkeit definiert bei: Sinuswelle 42.5..69Hz, Spannung > 10V, Strom ≥ 10A, Pf ≥ 0.5 (**) Für Strom <10A Hinzufügen ±7%Anz.zu Genauigkeit Blindenergie AC (AC + DC TRMS) Auflösung [kVARh] Genauigkeit (*) Messbereich [kVARh] $0.001 \div 9.999$ (**) 0.001 $10.00 \div 99.99$ 0.01 ±(3.0%Anz +10dgt) $100.0 \div 999.9$ 0.1 (*) Genauiokeit definiert bei: Sinuswelle 42.5..69Hz, Spannung > 10V, Strom \geq 10A, Pf \leq 0.9 (**) Für Strom <10A Hinzufügen ±4%Anz.zu Genauigkeit Leistungsfaktor Messbereich Auflösung Genauigkeit (*) 0.20i ÷ 1.00 ÷ 0.20c 0.01 ±(2.0%Anz +2dgt) Genauigkeit definiert bei: Sinuswelle 42.5..69Hz, Spannung > 10V, Strom ≥ 2A Spannungs- und Stromoberwellen Frequenzbereich Oberwelle Auflösung Genauigkeit (* keine genullten Werte) 0 (DC) ±(10.0%Anz +5dgt) 0.1V/0.1A $42.5 \div 69$ 1..25 ±(5.0%Anz +5dgt)

 THD%
 0.1 %

 (*) Spannungsoberwellen werden unter folgenden Bedingungen auf Null gesetzt:

1 Harm:: falls Wert <1.0V; DC,2 bis 25. Harm.: falls harmonischer Wert <0.5% des grundsätzlichen Wertes oder falls Wert <1.0V

(*) Stromoberwellen werden unter folgenden Bedingungen auf Null gesetzt:

±(10.0%Anz +5dgt)

8.1.1. Richtlinien Sicherheitsstandard: EMC: Technische Dokumentation: Sicher. von Messzubehör: Isolation: Verschmutzungsgrad: Überspannungskategorie:	IEC/EN61010-1, IEC/EN61010-2-032 IEC/EN61326-1 IEC/EN61187 IEC/EN61010-31 Klasse 2, doppelte Isolation 2 CAT IV 600V, CAT III 1000V zu Erde
8.1.2. Allgemeine Eigenschaften	
Mechanische Eigenschaften Abmessungen (L x B x H): Gewicht (inklusive Batterie): Max Kabeldurchmesser: Mechanischer Schutz:	252 x 88 x 44mm ca. 420g 45mm IP20
Schnittstelle verlassen Connection:	WiFi
Stromversorgung Batterietyp: Batterielebensdauer: Autopower OFF:	2 Batterien x 1.5V LR 03 AAA ca. 40 Stunden bei ununterbrochenem Gebrauch in Stellung "W ≂ " 5 Min. mit aktiver Funktion
Speicher Speicherkapazität:	2MB
Recordings Speichern des Anlaufstroms : Speichern des Log + Snapshot: Abtastrate: Log: Integrationszeitraum: Log: Max Autonomie der Reg. (Std)	max 20 (mit maximal 10 Ereignissen) max 99 Dateien 128 Samples pro Periode (Grundabtastung) 1s, 5s, 10s, 30s, 60s, 120s, 300s, 600s, 900s ~2.1 x PI. Beispiel: PI=60s →~126 Std ~ 5Tags
Anzeige Eigenschaften: Aktualisierungsfrequenz:	Graphische Anzeige 128x128 pixel 1/s

-MHT°

8.2. UMWELTBEDINGUNGEN

8.2.1. Klimabedingungen für den Gebrauch

Bezugstemperatur:	23°C ± 5°C
Betriebstemperatur:	0°C ÷ 40°C
Zulässige Betriebs-Luftfeuchtigkeit:	<80%RH
Lagertemperatur:	-10°C ÷ 60°C
Lager-Luftfeuchtigkeit:	<70%RH
Maximale Höhe:	2000m, Gebrauch im Inneren

Dieses Produkt ist konform im Sinne der Niederspannungsrichtlinie 2014/35/EU, (LVD) und der EMV Richtlinie 2014/30/EU Dieses Produkt ist konform im Sinne der Richtlinie 2011/65/EU (RoHS) und der Richtlinie 2012/19/EU (WEEE)

8.3. ZUBEHÖR

8.3.1. Standard Zubehör

- Zwei Messleitungen
- Zwei Krokodilklemmen
- Schutztasche
- Batterien
- TOPVIEWS: PC-Software für Windows
- ISO 9000 Kalibrierzertifikat
- Bedienungsanleitung auf CD-ROM
- Kurzanleitung

9. SERVICE

9.1. GARANTIEBEDINGUNGEN

Für dieses Gerät gewähren wir Garantie auf Material- oder Produktionsfehler, entsprechend unseren allgemeinen Geschäftsbedingungen. Während der Garantiefrist behält sich der Hersteller das Recht vor, das Produkt wahlweise zu reparieren oder zu ersetzen. Falls Sie das Gerät aus irgendeinem Grund für Reparatur oder Austausch einschicken müssen, setzen Sie sich bitte zuerst mit dem lokalen Händler in Verbindung, bei dem Sie das Gerät gekauft haben. Vergessen Sie nicht, einen Bericht über die Gründe Einschicken beizulegen (erkannte Mängel). Verwenden Sie für das nur die Originalverpackung. Alle Schäden beim Versand, die auf Nichtverwendung der Originalverpackung zurückzuführen sind, hat auf jeden Fall der Kunde zu tragen. Der Hersteller übernimmt keine Haftung für Personen- oder Sachschäden.

Die Garantie gilt nicht in den folgenden Fällen:

- Reparatur und/oder Austausch von Zubehörteilen und Batterien (die nicht von der Garantie abgedeckt sind).
- Reparaturen, die durch unsachgemäße Verwendung notwendig wurden (einschließlich Anschluss an bestimmte Anwendungen, die nicht im Benutzerhandbuch berücksichtigt sind) oder unsachgemäße Kombination mit nicht kompatiblem Zubehör oder Gerät.
- Reparaturen, die durch unsachgemäßes Verpackungsmaterial, das auf dem Transport Schäden verursacht hat, notwendig wurden.
- Reparaturen, die notwendig wurden durch vorherige Reparaturversuche durch ungeschultes oder unautorisiertes Personal.
- Geräte, die aus welchen Gründen auch immer durch den Kunden selbst ohne explizite Autorisierung unserer technischen Abteilung modifiziert wurden.
- Verwendung auf andere Art als in den technischen Daten oder im Benutzerhandbuch vorgesehen.

Der Inhalt dieser Bedienungsanleitung darf ohne das Einverständnis des Herstellers in keiner Form reproduziert werden.

Unsere Produkte sind patentiert und unsere Warenzeichen eingetragen. Wir behalten uns das Recht vor, Spezifikationen und Preise aufgrund eventuell notwendiger technischer Verbesserungen oder Entwicklungen zu ändern.

9.2. SERVICE

Für den Fall, dass das Gerät nicht korrekt funktioniert, stellen Sie vor der Kontaktaufnahme mit Ihrem Händler sicher, dass die Batterien und die Kabel korrekt eingesetzt sind und funktionieren, und sie ersetzen, wenn nötig. Stellen Sie sicher, dass Ihre Betriebsabläufe der in dieser Betriebsanleitung beschriebenen Vorgehensweise entsprechen. Falls Sie das Gerät aus irgendeinem Grund für Reparatur oder Austausch einschicken müssen, setzen Sie sich bitte zuerst mit dem Iokalen Händler in Verbindung, bei dem Sie das Gerät gekauft haben. Transportkosten werden vom Kunden getragen.

Vergessen Sie nicht, einen Bericht über die Gründe für das Einschicken beizulegen (erkannte Mängel). Verwenden Sie nur die Originalverpackung. Alle Schäden beim Versand, die auf Nichtverwendung der Originalverpackung zurückzuführen sind, hat auf jeden Fall der Kunde zu tragen.

10. ANHANG – THEORETISCHE INFORMATIONEN

10.1. SPANNUNGS- UND STROMOBERWELLEN

Jede periodische Nicht-Sinuswelle kann als Summe von Sinuswellen dargestellt werden, mit einer Frequenz, die jeweils ein Vielfaches der Fundamentalen ist, entsprechend der Beziehung:

$$v(t) = V_0 + \sum_{k=1}^{\infty} V_k sin(\omega_k t + \varphi_k)$$
⁽¹⁾

wobei:

 V_0 = Mittelwert von v(t)

 V_1 = Amplitude der Fundamentalen von v(t)

 V_k = Amplitude der k. Harmonischen von v(t)

Auswirkung der Summe von 2 Frequenzvielfachen.

In der Netzversorgung, hat die Fundamentale eine Frequenz von 50 Hz, die 2. Oberwelle hat eine Frequenz von 100 Hz, die 3. Oberwelle hat eine Frequenz von 150 Hz und so weiter. Die harmonische Verzerrung ist ein ständiges Problem und sollte nicht mit kurzzeitigen Ereignissen verwechselt werden, wie Spannungseinbrüchen, Spannungsspitzen oder Schwankungen.

Es kann festgestellt werden, dass in (1) der Index des Zeichens von 1 bis unendlich geht. Was sich in Realität abspielt, ist, dass ein Signal keine unbegrenzte Anzahl von Oberwellen hat: es existiert immer eine Ordnungs-Nummer, ab der der Wert der Oberwellen vernachlässigbar ist. Oberwelle anzuhalten.

Ein fundamentaler Begriff zu Erkennung der Anwesenheit von Oberwellen ist der THD, definiert als:

Dieser Index nimmt alle Oberwellen in seine Rechnung auf. Je höher er ist, desto verformter erhalten Sie die Wellenform.

Grenzwerte für Oberwellen

EN-50160 legt die Grenzen für die Spannungsoberwellen fest, die in ein Netz durch einen Stromversorger eingeleitet werden können. Unter normalen Bedingungen, während irgendeiner Periode in der Woche, 95% der RMS Werte jeder Spannungsoberwelle, gemittelt über 10 Minuten, wird niedriger zu sein haben, oder gleich der Werte, die in der folgenden Tabelle angegeben sind.

Die Gesamtharmonische Oberwelligkeit (THD%) der Versorgungsspannung muss niedriger als oder gleich 8% sein.

Ungerade Oberwellen			Geraden Oberwellen		
Kei	Keine Vielfache von 3 Vielfache von 3		/ielfache von 3		Relative
Order h	Relative Spannung %Max	Order h	Relative Spannung %Max	Order h	Spannung %Max
5	6	3	5	2	2
7	5	9	1,5	4	1
11	3,5	15	0,5	624	0,5
13	3	21	0,5		
17	2				
19	1,5				
23	1,5				
25	1,5				

Diese Grenzen, theoretisch anwendbar nur für die Lieferanten von elektrischer Energie, stellen jedoch eine Serie von Bezugswerten bereit, innerhalb derer die Oberwellen, die durch den Benutzer in das Netzwerk eingespeist werden, enthalten sein müssen.

Vorhandensein von Oberwellen: Gründe

Jedes Gerät, das die Sinuswelle ändert oder nur einen Teil einer Welle benutzt, verursacht Verzerrungen an der Sinuswelle und deshalb Oberwellen.

Alle Stromsignale ergeben sich auf irgendeine Weise virtuell verzerrt. Die gewöhnlichste Situation ist der harmonische Klirrfaktor, der von nichtlinearen Lasten wie elektrischen Haushalts-Vorrichtungen, Personalcomputern oder Geschwindigkeits-Kontrolleinheiten für Motoren verursacht wird. Der harmonische Klirrfaktor verursacht bedeutende Ströme bei Frequenzen, die ganzzahlige Vielfache der Grundfrequenz sind. Harmonische Ströme beeinflussen beachtlich den Mittelpunkt- oder Neutralleiter elektrischer Installationen.

In den meisten Ländern ist die Netzversorgung dreiphasig 50/60Hz mit primären Dreieckund sekundären Stern-Transformatoren. Der sekundären Transformator stellt generell 230V Wechselstrom Phase gegen Neutralleiter und 400V Wechselstrom Phase gegen Phase bereit. Die Lastenausbalancierung auf jeder Phase verursacht immer Kopfschmerzen bei Designern von elektrischen Systemen.

Bis vor einigen zehn Jahren, war in einem gut ausbalancierten System die vektorielle Summe der Ströme im Neutralleiter Null oder ganz niedrig (gegebene Schwierigkeit vom Erhalt eines perfekten Gleichgewichtes). Die Geräte waren Glühlampen, kleine Motoren und andere Geräte, die lineare Lasten präsentierten. Das Ergebnis war ein im wesentlichen sinusförmiger Strom in jeder Phase und ein niedriger Strom im Neutralleiter bei einer Frequenz von 50/60Hz.

"Moderne" Geräte wie Fernseher, fluoreszierende Lichter, Videorekorder und Mikrowellenöfen ziehen gewöhnlich nur einen Teil einer Periode Strom und verursachen so nicht lineare Lasten und folglich nicht lineare Ströme. All diese Faktoren erzeugen ungerade Oberwellen der 50/60Hz Netzfrequenz. Aus diesem Grund enthalten die Ströme in den Transformatoren der Verteilerstationen nicht nur einen 50Hz (oder 60Hz) Bestandteil, sondern auch ein 150Hz (oder 180Hz) Bestandteil, ein 250Hz (oder 300Hz) Bestandteil und andere bezeichnende Bestandteile von Oberwellen bis zu 750Hz (oder 900Hz) oder höher.

Der Wert der vektoriellen Summe der Ströme in einem gut ausbalancierten System, das nicht lineare Lasten versorgt, kann noch ganz niedrig sein. Trotzdem eliminiert die Summe nicht alle Stromoberwellen. Die ungeraden Vielfache der dritten Oberwelle ("TRIPLENS" genannt) werden algebraisch im Neutralleiter addiert und können daher zur Überhitzung des Leiters führen, auch wenn die Lasten ausbalanciert sind.

Vorhandensein von Oberwellen: Konsequenzen

Im Allgemeinen, Oberwellen wie die 2., die 4. usw. verursachen keine Probleme. Entwickler sollten die unten angegebenen Vorgaben in Betracht ziehen, wenn sie ein Energieverteilungssystem entwerfen, das Stromoberwellen enthalten wird:

Systemteile	Von Oberwellen verursachte Effekte		
Schmelzsicheru ngen	Nicht gleichmäßige Erwärmung der inneren Schmelzsicherung und folgende Überhitzung, die auch zur Explosion der Patrone führen kann.		
Kabel	Steigerung des "Haut"-Effektes, aufgrund dessen in einem Kabel, das aus mehreren Drähten besteht, die inneren Drähte einen größeren Widerstand als die äußeren Drähte aufweisen. Aus diesem Grund verursacht der Strom, der sich mehr dem äußeren Bereich des Leiter entlang verteilt, die folgende Effekte: – Überhitzung des Leiters; – frühzeitige Alterung der isolierenden Hülle; – Größeren Spannungsabfall in der Linie.		
Neutralleiter	Dreifache Harmonische, ungerade Vielfache von drei, werden im Neutralleiter zusammenaddiert (anstatt dass sie sich gegeneinander aufheben) und schaffen so die Vorraussetzung für eine Überhitzung des Leiters, was äußerst gefährlich ist.		
Transformatoren	Steigerung des Kupferverlustes, sowohl durch eine Erhöhung des RMS Wertes des Stroms in den Wicklungen als auch durch den Haut-Effekt in den Lackdrähten verursacht. Steigerung des Eisenverlustes aufgrund der Verzerrung der Hysterese-Periode und der Entstehung von Wirbelströmen im magnetischen Pack. Erwärmung der Isolation aufgrund des eventuellen Gleichstromteils, der in der Lage ist, die Säulen des magnetischen Packs zu sättigen.		
Motoren	Steigerung des Verlustes, mit Überhitzung der Wicklungen und möglichen Schäden der Isolation. Die 5. und 11. Harmonische verursachen die Entstehung von falschen elektromagnetischen Drehmomenten, die die Motorgeschwindigkeit steigern können.		
BLK- Kondensatoren	Steigerung der "Parallelresonanz" in einem Kreis wegen des Vorhandenseins von induktiven Lasten und BLK-Kondensatoren, wenn eine der erzeugten Oberwellen dieselbe Frequenz hat, die das Resonanz-Phänomen kennzeichnet. Die Effekte eines solchen Ereignisses können verheerend sein, mit der Explosion der betroffenen BLK-Kondensatoren.		
Fehlerstromsch utzschalter	Mögliche Saturation der Zange zur Ermittlung der Ströme und folgende Störungen, sowohl als ungelegene Eingriffe, als auch als Steigerung der Eingreifgrenze.		
Scheiben- Energiezähler	Steigerung der Drehgeschwindigkeit der Scheibe und folgender Messfehler (besonders wenn der Leistungsfaktor der Last niedrig ist).		
Leistungs- Schütz	Beschränkung der elektrischen Dauer der Kontaktpads.		
Unterbrechungsf reie Stromversorgun gen	Beschränkung der maximalen Leistung, die die USV liefern kann.		
Elektronische Geräte	Störungen der internen Platinen, die nicht durch geeignete Vorrichtungen geschützt sind.		